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Abstract. We consider certain dual of the Kohlhaase-Schraen resolutions for locally analytic
principal series representations of p-adic Lie groups in the case of integral weights. The dual
complexes calculate the expected Bernstein-Zelevinsky dual of the locally analytic representa-
tions and lead to the Grothendieck-Serre duality of coherent sheaves on patched eigenvarieties.

Contents

1. Introduction 2
1.1. Motivation 2
1.2. Duality for Kohlhaase-Schraen resolutions 3
1.3. Duality for coherent sheaves 4
1.4. Construction and proof 5
1.5. Overview 6
1.6. Acknowledgements 6
1.7. Notation and convention 7
2. Kohlhaase-Schraen resolutions 7
2.1. The Koszul complexes 7
2.2. Change the levels 11
2.3. Examples 15
3. Dual complexes 16
3.1. Banach modules over the distribution algebras 16
3.2. The resolution for principal series 18
3.3. Beyond dual Verma modules 19
3.4. The surjectivity 21
3.5. Duality for complexes 24
4. Localization and completion 27
4.1. The localization functor 27
4.2. Dual Verma modules for dominant weights 29
4.3. Completion near the boundary 31
5. Duality of patching modules 33
5.1. Cohomological duality 33
5.2. Stein spaces 36
5.3. Patching functors and patching modules 39
References 44

1



2 MATTHIAS STRAUCH AND ZHIXIANG WU

1. Introduction

Let p be a prime number. In this paper, we determine the Bernstein-Zelevinsky dual of a
locally analytic principal series representation of a split reductive p-adic Lie group, induced
from a locally algebraic character of a maximal torus. Take d ≥ 2 and G = GLd(Qp) in this
introduction.

1.1. Motivation. Let π be a smooth representation of G over C, the Bernstein-Zelevinsky
duality (also called cohomological duality) is given by ([Ber92, §IV.5], see also [Far06])

π 7→ DBZ(π) := RHomG(π, Csmc (G,C))
where Csmc (G,C) denotes the space of compactly supported locally constant functions on G,
which is a bimodule over G via the left and right translations. An interesting property is that
the duality should intertwine with the Grothendieck-Serre duality for coherent sheaves on the
stack of Langlands parameters under the categorical Langlands correspondences (e.g. [Zhu20,
Conj. 4.5.1 (1)]).

For p-adic representations of G, notably in the categorical p-adic local Langlands program of
Emerton-Gee-Hellmann presented in [EGH23], similar dualities are proposed for smooth repre-
sentations in natural characteristics [EGH23, Conj. 6.1.14]. It is also expected that such duality
exists for locally analytic representations [EGH23, Rem. 6.2.22]. Recent work of Hellmann-
Hernandez-Schraen [HHS24] gives strong evidence in this direction by establishing Serre duality
for some sheaves on (patched) eigenvarieties. The property of these coherent sheaves is vital for
loc. cit. to produce multiplicities of p-adic automorphic eigenforms.

In this paper, for a locally analytic representation π over a p-adic coefficient field E, we naively
generalize the duality by

(1.1) π 7→ DBZ(π) := RHomG(π, Clac (G,E))

where Clac (G,E) is the space of compactly supported locally analytic functions on G.

Remark 1.1. Since (1.1) involves the derived category of locally analytic representations (that
may not be admissible in the sense of Schneider-Teitelbaum [ST03]), we can and will use the
solid formalism of locally analytic representations by Rodrigues Jacinto-Rodŕıguez Camargo
[RJRC22, RJRC23] to make the definition rigorous.

Remark 1.2. Recent work of Claudius Heyer and Lucas Mann explains the cohomological
duality for smooth representations using a geometric language and the six functor formalism
(see [HM24, Prop. 1.4.3]). Their approach, together with [RJRC23, Cam24], should be enough
to provide us with a general theory of the duality for locally analytic representations.

We will not consider the general theory in this paper. Rather, we would like to calculate
explicitly DBZ(π) when π is a locally analytic principal series representation. This will be
enough to answer partially the expectation in [EGH23]. Whatever the definition of DBZ, we
expect that (Theorem 5.3)

DBZ(c-Ind
G
I W) ≃ HomG(c-Ind

G
I W, Clac (G,E)) = c-IndGI W∨

where c-IndGI denotes the compact induction when I is a compact open subgroup of G, W is
certain locally analytic representation of I such that the continuous E-linear dual W∨ is also a
locally analytic representation. This would allow us to calculate DBZ(π) using a resolution of π
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by compactly induced representations as done for smooth representations by Schneider-Stuhler
in [SS97].

1.2. Duality for Kohlhaase-Schraen resolutions. The resolution we consider is that of
Kohlhaase-Schraen in [KS12]. Let B be the Borel subgroup of G of upper-triangular matrices
with the maximal diagonal torus T . Let χ : T → E× be a continuous character. Let π = IndGBχ
be the locally analytic parabolic induction. Kohlhaase-Schraen found a presentation of π as a
(derived) quotient of certain compactly induced representation:

IndGBχ ≃ c-IndGI W♯ ⊗L
H H/m.

Here I is the Iwahori subgroup of G, W♯ is a locally analytic Banach representation of I (see

(1.4) for the precise definition) and H = E[U1, · · · , Ud], where U1, · · · , Ud ∈ EndG(c-Ind
G
I W♯),

is a polynomial (Iwahori-Hecke) algebra acting on c-IndGI W♯ with the maximal ideal m = (U1−
1, · · · , Ud − 1) 1. Such presentation arises from a Koszul resolution:
(1.2)

∧•Hd ⊗H c-IndGI W♯ := [c-IndGI W♯ → · · · → ∧iHd ⊗H c-IndGI W♯ → · · · → c-IndGI W♯]
∼→ IndGBχ

in the derived category. Taking account of the expectation that DBZ(c-Ind
G
I W♯) = c-IndGI W∨

♯ ,

and the self-duality of the Koszul complex ∧•Hd, DBZ(Ind
G
Bχ) should be given by the following

dual complex

HomG(∧•Hd ⊗H c-IndGI W♯, Clac (G,E)) ≃ ∧•Hd ⊗H c-IndGI W∨
♯ [−d]

with a shift of degree d. Let B be the opposite Borel subgroup. Let g, b be the Lie algebras of
G and B with the universal enveloping algebras U(g), U(b). The theorem below determines this
dual.

Theorem 1.3. Suppose that χ is a locally algebraic character with weight λ ∈ Zn and let
χsm : T → E× be the smooth part of χ. Then there is a quasi-isomorphism

∧•Hd ⊗H c-IndGI W∨
♯ [−d] ≃ FG

B
(M(λ)∨,DBZ(χsm))

where M(λ)∨ = (U(g) ⊗U(b) λ)
∨ is the dual Verma module in the BGG category Ob for the

highest weight λ.

Here DBZ(χsm) = χ−1
sm [−d] and FG

B
(M(λ)∨, χ−1

sm) is a locally analytic representation con-

structed using the functor FG
B
(−,−) in [OS15] from certain g-modules and smooth representa-

tions of T . It admits the same Jordan-Hölder factors as IndG
B
χ−1 = FG

B
(M(λ), χ−1

sm). Similarly,

IndGBχ = FG
B (M(−λ), χsm) where M(−λ) = U(g) ⊗U(b) (−λ) ∈ Ob is the Verma module. We

have a general result for representations that are in the image of the functor FG
B .

Theorem 1.4 (Theorem 3.15 and Theorem 3.21). Let M be a g-module in the BGG category Ob

with algebraic weights and χsm be a smooth character of T , then there exists a Koszul resolution
of FG

B (M,χsm)

∧•Hd ⊗H c-IndGI W♯ ≃ FG
B (M,χsm)

1The ideal m differs from that in [KS12] because of our normalizations of the Ui-operators (Remark 2.5).
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for some Banach I-representation W♯ such that there exists a quasi-isomorphism

∧•Hd ⊗H c-IndGI W∨
♯ [−d] ≃ FG

B
(HomE(M,E)n

∞
B ,DBZ(χsm))

where HomE(M,E)n
∞
B ∈ Ob is certain BGG dual of M ∈ Ob appeared in Breuil’s adjunction

formula [Bre15, Prop. 4.2] (see (1.3)).

The calculation leads to the following conjecture.

Conjecture 1.5. Let P be a parabolic subgroup of G (containing B) with Lie algebra p and the
opposite P . Let M be a g-module in the parabolic BGG category Op with algebraic weights and
V be a finitely presented admissible smooth representation of the Levi factor of P , then we have

DBZ(FG
P (M,V )) = FG

P
(HomE(M,E)n

∞
P ,DBZ(V ))

where nP is the nilradical of the Lie algebra of P .

Theorem 1.6 (Theorem 5.5). Conjecture 1.5 is true if P = B, V is a smooth character of T
and DBZ is defined by (1.1) (Definition 5.4).

Remark 1.7. If M = E is the trivial g-module, then FG
P (M,V ) = (IndGPV )sm is the smooth

parabolic induction. In this case the conjecture says that DBZ((Ind
G
PV )sm) = (IndG

P
DBZ(V ))sm,

which matches with the duality for smooth representations [Ber92, Thm. IV.31]. As in loc. cit.,
one possible approach to proving the conjecture would be establishing the second adjointness
theorem for the functor FG

P , in some way generalizing Breuil’s adjunction formula [Bre15, Prop.
4.2] (which is based on Emerton’s adjunction [Eme07], see also [BHS19, Lem. 5.2.1]):

(1.3) HomG(FG
P (M,V ),Π) = Hom(g,P )(HomE(M,E)n

∞
P ⊗E Csmc (NP , V ),Π)

to the derived setting.

Remark 1.8. Let τ : g 7→ (gt)−1 be the Chevalley involution (inverse transpose) of G =
GLd(Qp) which switches B and B. Let D = τ ◦DBZ be the twist by the Chevalley involution of
our duality functor. Then the above theorem says that D(FG

B (M,χsm)) = FG
B (M∨, χsm) up to a

degree shift, where (−)∨ denotes the dual in the BGG category Ob. This is exactly the duality
expected in [EGH23, Rem. 6.2.22], and discussed in [HHS24, Thm. 1.4].

1.3. Duality for coherent sheaves. Using the Koszul resolutions, we can verify the categorical
expectation for the Bernstein-Zelevinsky duality in some global setting. The I-representations
asW♯ andW∨

♯ define coefficient systems on locally symmetric spaces with the Iwahori level at p.
The cohomologies or homologies of these coefficient systems, which define overconvergent p-adic
automorphic forms (e.g., [Urb11, AS08, Loe11, HN17]), should be related by Poincaré duality
and induce certain Serre duality of coherent sheaves on the (patched) eigenvariety after taking
finite slope parts. In this paper, we will work in simple, and more local, settings of abstract
patched eigenvarieties.

In §5.3, using patched completed homologies in [CEG+16], from a locally analytic representa-

tion π appeared in Theorem 1.4, we can attach two coherent sheaves Arig
∞ (π),A

′,rig
∞ (π) supported

respectively on two rigid analytic spaces X and X′. Here X (resp. X′) is roughly the space
of deformations of a mod-p Galois representation ρ (resp. the dual ρ∨ = τ ◦ ρ up to a twist
where τ is given by the inverse transpose). The Chevalley involution induces an isomorphism
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η : X ≃ X′. The following theorem is a formal consequence of Theorem 1.4 and the Poincaré
duality of completed cohomologies.

Theorem 1.9 (Theorem 5.12). Let π = FG
B (M,χsm) be as in Theorem 1.4. There exists an

isomorphism

DGS(A
rig
∞ (π)) ≃ η∗A′,rig

∞ (DBZ(π)).

of coherent sheaves on X, where DGS(−) denotes the Grothendieck-Serre duality for coherent
sheaves on X.

1.4. Construction and proof. Now we go into more (technical) details of Theorem 1.4, by
explaining the two types of resolutions ∧•Hd⊗H c-IndGI W♯ and ∧•Hd⊗H c-IndGI W♮ of a principal

series IndGBχ where χ is locally algebraic of weight λ.
Take n ≥ 1. Let CIn−an(I, E) be functions on I that is rigid analytic on all cosets for certain

open normal subgroup In ⊂ I. Let DIn−an(I, E) := CIn−an(I, E)′ be the continuous dual of
CIn−an(I, E), the In-analytic distribution algebra. Consider the I-subspace

IndGBχ(BI) = {f ∈ Cla(G,E) | f(bg) = χ(b)f(g), ∀b ∈ B, supp(f) ⊂ BI} ⊂ IndGBχ

of functions in IndGBχ supported on BI ⊂ G. Then the representationW♯ of I in (1.2) is defined
to be

(1.4) W♯ := IndGBχ(BI) ∩ CIn−an(I, E)

of functions that are “In-rigid analytic” which is naturally a module over DIn−an(I, E).
Let N be the unipotent radical of B. Using that B\BI = I ∩N , we may identify the space

IndGBχ(BI) = IndII∩Bχ with Cla(I ∩ N,E), the space of locally analytic functions on I ∩ N .
There are inclusions of subspaces

(1.5) Cpol(I ∩N,E) ⊂ W♯ ⊂ Cla(I ∩N,E) = IndGBχ(BI) ⊂ IndGBχ

where Cpol(I ∩ N,E) is the space of polynomial (algebraic) functions on I ∩ N . The maps in
(1.5) are equivariant for a subalgebra D(B ∩ I, g) ⊂ DIn−an(I, E) generated by U(g) and the
distribution algebra of B ∩ I. Moreover, as a g-module, Cpol(I ∩N,E) can be identified to the

dual Verma module M(λ)∨ in Ob whose appearance is also the first step for (1.3).
The first inclusion of (1.5) induces a natural map

W♮ := DIn−an(I, E)⊗D(B∩I,g) C
pol(I ∩N,E)→W♯.

Together with the Kohlhaase-Schraen resolution (1.2), we arrive at least a map of complexes

(1.6) ∧•Hd ⊗H c-IndGI W♮ → ∧•Hd ⊗H c-IndGI W♯ → IndGBχ.

Note that in contrast to the locally analytic representation W♯, the I-representation W♮ is finite

over the distribution algebra DIn−an(I, E) and is usually considered as a (continuous linear)
dual of a locally analytic representation as W∨

♯ (even though W♮,W∨
♯ are still locally analytic

representations). The left-hand side of (1.6) will be the complex that is “dual” to the original
Kohlhaase-Schraen resolution in Theorem 1.4 for DBZ(Ind

G
Bχ) = FG

B
(M(λ)∨,DBZ(χsm)).

We prove that (1.6) is a quasi-isomorphism, thus obtaining the second type resolution of
IndGBχ in Theorem 1.4. The major difficulty lies in the surjectivity of the map

(1.7) c-IndGI W♮ → IndGBχ.
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The image ofW♮ is a union of I-translations of some Banach/Smith completion of Cpol(I∩N,E).
Our proof of the surjectivity boils down to some statement similar to Proposition 1.10 below
on different completions of the U(g)-module M(λ)∨ ≃ Cpol(I ∩ N,E) ≃ Cpol(N,E). We let

Û(g) be the Arens-Michael envelope of the universal enveloping algebra U(g), which is a Fréchet
completion of U(g). We write G = GLn ⊃ B ⊃ N for the algebraic groups such that B =

B(Qp), N = N(Qp). The space Can(N,E) of rigid analytic functions on the analytification N
an

of NE is a Fréchet completion of the space Cpol(N,E) of all algebraic functions.

Proposition 1.10. The isomorphism M(λ)∨ ≃ Cpol(N,E) extends to a surjection (even an

isomorphism) Û(g)⊗U(g) M(λ)∨ → Can(N,E).

Except for the case G = SL2 where we calculate explicitly (Example 3.14), the proof of

the above statement uses essentially the theory of rigid analytic D̂-modules and the Beilinson-

Bernstein localization for Û(g)-modules of Ardakov-Wadsley (see for example [Ard14], even
though the actual proof will only use the theory developed in [AW13] for Banach completions).
The reason is that it’s easier to compare the two types of completions of U(g)-modules locally
after the localization. In the case that λ = 0, the dual Verma module M(λ)∨ is localized to
the D-module j∗ON where j : N ≃ Nw0 ↪→ G/B. Proposition 1.10 is roughly equivalent to

that the localization of Û(g) ⊗U(g) M(λ)∨ is the D̂-module jan∗ ON
an . We emphasize the non-

trivial fact that the direct image jan∗ ON
an is coadmissible over D̂ which implies that Can(N,E)

is coadmissible over Û(g) by taking the global section. Such direct images of D̂-modules were
studied by Bitoun-Bode in [BB21] and our proof is largely inspired by their methods.

Remark 1.11. As shown by [BB21], the direct image of a coadmissible D̂-module may not be
coadmissible. This is not the case for us with the integral weights but remains a serious issue
for more general weights. We don’t know whether the resolution (1.6) holds if the weights of
the character χ are not “p-adically non-Liouville” in some way, even when G = SL2. This is the
reason that we restrict to locally algebraic characters for parabolic inductions. The duality of
representations of general weights or families of representations is still mysterious to the authors.

1.5. Overview. We review the construction of Kohlhaase-Schraen in §2. In §3, we establish the
resolutions for representations and study dualities between complexes, thus proving the main
Theorem 1.4. The proof of the surjectivity of (1.7) (and Proposition 1.10) is postponed to §4. In
the last section §5, we embrace the solid formalism to discuss the duality between representations
and coherent sheaves (Theorem 1.9).
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1.7. Notation and convention. Let L be a finite extension of Qp with the ring of integers
O = OL and a uniformizer ϖ = ϖL. We take a finite large enough extension E of Qp as the
coefficient field.

Fix G to be a connected split reductive group over L with a Borel subgroup B = TN where
T is a split maximal torus. We fix also split models GOL

⊃ BOL
⊃ TOL

over OL of G. Let d be
the rank of T. Write G = G(L) ⊃ B = B(L) ⊃ T = T(L) and similarly N = N(L). Denote by
B = NT the opposite Borel subgroup. Let Φ ⊃ Φ+ ⊃ ∆ be the set of roots, positive roots and
simple roots of G, corresponding to B. Let X∗(T) (resp. X∗(T)) be the lattice of coweights
(resp. weights) of T.

Write g, b, t, n, etc. for the base change to E of the Qp-Lie algebras of G,B, T,N , etc. Write
U(g), U(b), etc. for the universal enveloping algebras.

Set K = GOL
(OL), a hyperspecial maximal compact open subgroup of G. Write B0 =

K ∩B, T0 = T ∩K, etc. Set T− = {t ∈ T | t(K ∩N)t−1 ⊂ K ∩N} and T+ = (T−)−1.
For a p-adic Lie group G, we write Cla(G,E) for the space of locally Qp-analytic functions on

G with values in E. Write D(G,E) = Cla(G,E)′ for the distribution algebra.
Let I be the preimage of BOL

(OL/ϖL) under the reduction map K → GOL
(OL/ϖL). The

Iwahori subgroup I admits the Iwahori decomposition I = (I ∩N)(I ∩ T )(I ∩N). There exists
and we fix a sequence of good open normal subgroups · · · ⊂ In+1 ⊂ In ⊂ · · · ⊂ I where n ≥ 1
forming a neighborhood basis of the neutral element of G and admitting Iwahori decompositions
In = (In ∩ B)(In ∩ T )(In ∩ B), coming from decompositions of rigid analytic groups In as in
[Eme06, Prop. 4.1.3].

We let Can(In, E) be the rigid analytic functions on the rigid space (ResL/Qp
In) ⊗L E. Set

CIn−an(I, E) = ⊕g∈I/Ing.Can(In, E) ⊂ Cla(I, E). Since In is normal in I and any element
g ∈ I induces a rigid analytic automorphism of In by conjugation, we have g.Can(In, E) =
Can(Ing−1, E) = Can(g−1In, E) for all g ∈ I. The space CIn−an(I, E) consists of In-rigid analytic
functions on I. Let DIn−an(I, E) be the continuous linear dual of CIn−an(I, E).

We use τ to denote the Chevalley involution (inverse transpose) of G, G or g. For M ∈ Ob,

we will write τ(M)∨ = HomE(M,E)n
∞
B . See Remark 3.4.

2. Kohlhaase-Schraen resolutions

In this section, we review and extend (a little bit of) the work of Kohlhaase-Schraen in [KS12,
§2] for resolutions of parabolic inductions.

2.1. The Koszul complexes. We start with some general considerations of compact induc-
tions (from the Iwahori subgroup I) and Hecke operators. Then we turn to Kohlhaase-Schraen
resolutions for parabolic inductions (from the Borel subgroup B)

Suppose that W is a representation of the Iwahori subgroup I of the split p-adic reductive
group G over E. Consider the abstract compactly induced representation

c-IndGI W = {f : G→W compactly supported | f(xg) = x.f(g),∀x ∈ I}
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on which G acts by right translations. IfW is a locally analytic representation of I, c-IndGI W can
be equipped with the locally convex direct sum topology so that c-IndGI W is a locally analytic
representation of G.

For g ∈ G,w ∈ W, we use the notation [g, w] = g[1, w] to denote the function in c-IndGI W
supported on Ig−1 sending ig−1 ∈ Ig−1 to i.w. Then [g, w] = [gi, i−1w] for i ∈ I. We also use
the notation [g,W] = [gI,W] to denote the space of all functions in c-IndGI W supported in Ig−1.
For a subset S ⊂ G, write [S,W] =

∑
s∈S [s,W] ⊂ c-IndGI W. Then c-IndGI W = ⊕g∈G/I [g,W] =

⊕g∈I\G/I [IgI,W].

The Hecke (endomorphism) algebra EndG(c-Ind
G
I W) = HomI(W, (c-Ind

G
I W)|I) acts on c-IndGI W,

where the equality follows from the usual Frobenius reciprocity. For t ∈ T ,
HomI(W, (IndItII W)|I) = HomI(W, IndII∩tIt−1 [t,W]) = HomI∩tIt−1(W, [t,W ])

gives rise to a subspace of EndG(c-Ind
G
I W) via IndItII W = [ItI,W] ⊂ c-IndGI W.

Assume that for t ∈ T−, there is an element Ut ∈ HomI∩tIt−1(W, [t,W]) ⊂ EndG(c-Ind
G
I W).

Equivalently, we make t−1 act on W by an operator ψt : W → W in the sense that the map
w 7→ [t, ψt.w] is in HomI∩tIt−1(W, [t,W]). More explicitly, ψt satisfies the condition

(t−1xt)ψt(w) = ψt(xw)

for x ∈ I ∩ tIt−1, w ∈ W. The corresponding action of Ut on c-IndGI W is given by

(2.1) Ut[g, w] =
∑

xtI∈ItI/I

[gxt, ψt(x
−1w)],∀g ∈ G,w ∈ W

by [KS12, (2.2)] (here xtI ∈ ItI/I is equivalent to x ∈ I/(I ∩ tIt−1)).

Lemma 2.1. Suppose that ψt1 ◦ ψt2 : W → W is equal to ψt1t2 for all t1, t2 ∈ T− (in other
words, W becomes a module over the semi-group IT+I), then Ut1Ut2 = Ut1t2.

Proof. By the Iwahori decomposition, ItI/I = (I ∩ N)/t(I ∩ N)t−1 · tI/I for any t ∈ T−. We
calculate that

Ut1Ut2 [g, w]

=
∑

xt1I∈It1I/I

∑
yt2I∈It2I/I

[gyt2xt1, ψt1(x
−1ψt2(y

−1w))]

=
∑

t2xt
−1
2 ∈t2(I∩N)t−1

2 /t1t2(I∩N)(t1t2)−1,y∈(I∩N)/t2(I∩N)t−1
2

[gy(t2xt
−1
2 )t2t1, ψt1ψt2((yt2xt

−1
2 )−1w)]

=
∑

x∈(I∩N)/t1t2(I∩N)(t1t2)−1

[gxt2t1, ψt1ψt2(x
−1w)],

where for the second equality, we used that x−1ψt2(−) = ψt2(t2x
−1t−1

2 −) since t2x
−1t−1

2 ∈
t2(I ∩N)t−1

2 ⊂ I ∩ t2It
−1
2 . The result follows. □

There is an isomorphism T/T0 ≃ X∗(T) of Z-modules characterized by ⟨χ, t⟩ = valϖ(χ(t)) for
χ ∈ X∗(T), t ∈ T , where valϖ denotes the ϖ-adic valuation. Under the identification T−/T0 =
X∗(T)− = {µ ∈ X∗(T) | ⟨α, µ⟩ ≤ 0,∀α ∈ Φ+} corresponds to the set of antidominant coweights.

It contains X∗(T)0 = {µ ∈ X∗(T) | ⟨α, µ⟩ = 0,∀α ∈ Φ} ≃ Zd−|∆|. Write Z for the center of G
and Z = Z(L). Then Z ⊂ T ([Mil17, Prop. 21.7]) and Z/(Z ∩K) ≃ X∗(T)0. Choose generators
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z1, · · · , zd−|∆| of Z/(Z ∩ K). And we choose a splitting X∗(T) ≃ X∗(T)′ ⊕ X∗(T)0 where

X∗(T)′ ≃ Z|∆| is dual to X∗(T)∩QΦ. It’s easy to see that the splitting induces an isomorphism

X∗(T)− ≃ N|∆| ⊕ Zd−|∆| as monoids and we can choose generators tα ∈ T−/T0, α ∈ ∆ for the

free monoid X∗(T)− ∩X∗(T)′ ≃ N|∆| (we use the same notation as in [KS12, §1] but we don’t
require ⟨α, tα⟩ = −1!).

Let H = E[T−/T0] = E[X∗(T)−] be the monoid ring. Then H = E[z±i , tα, i = 1, · · · , d −
|∆|, α ∈ ∆].

Choose an ordering of ∆ and we rewrite (t1, · · · , td) for the sequence (z1, · · · , zd−|∆|, tα, α ∈ ∆)
of elements in H. We write m ⊂ H for the ideal (t1 − 1, · · · , td − 1).

From now on we will always work in the situation that given W, there are operators ψt for
t ∈ T− makingW an IT+I-module as in Lemma 2.1. This implies that c-IndGI W is anH-module
given by (2.1) (note that Ut is the identity map if t ∈ T0.). And we will write the corresponding
Hecke operators Ut ∈ H for t ∈ T−/T0. If f : W1 → W2 is an IT+I-equivariant map, then the
induced G-map c-IndGI W1 → c-IndGI W2 is H-equivariant.

Recall for the sequence of elements (Ut1 − 1, · · · , Utd − 1), there is a homological complex
∧•Hd of H-modules with differentials

∧iHd → ∧i−1Hd : f1 ∧ · · · ∧ fi 7→
i∑

j=1

(−1)j+1φ(fj)f1 ∧ · · · ∧ f̂j ∧ · · · ∧ fi

where φ : Hd → H, (h1, · · · , hd) 7→
∑d

i=1 hi(Uti − 1) [Sta24, Tag 0621]. Note that

Hi(∧•Hd ⊗H c-IndGI W) = TorHi (H/m, c-IndGI W).

Proposition 2.2. The sequence (Ut1 − 1, · · · , Utd − 1) is Koszul regular for the H-module

c-IndGI W: the natural map

∧•Hd ⊗H c-IndGI W → c-IndGI W ⊗H H/m

is a quasi-isomorphism of E[G]-modules

Proof. This is [KS12, Thm. 2.5] with the same proof sketched below. We first reduce the
statement to the adjoint case G/Z. The operators Uzi , i = 1, · · · , d− |∆| acts on each [gIZ,W]
for g ∈ G/IZ. Since gIZ/gI = gZ/g(Z ∩ I) = g(Z/(Z ∩ I)) =

∏
i z

Z
i , it’s easy to see that

Uz1−1, · · · , Uzd−|∆|−1 form regular sequences on c-IndGI W and c-IndGI W/(Uzi−1, i = 1, · · · , d−
|∆|) ≃ c-IndGIZW.

We now consider the action of H′ = E[Utα , α ∈ ∆] on c-IndGIZW. Let m′ = Utα − 1, α ∈
∆. The statement is equivalent to that TorH

′
q (H′/m′, c-IndGIZW) = 0 for q ≥ 1. Recall

[KS12, Lem. 1.4], see also [Her11, Lem. 2.20]: G =
∐

t∈T/T0
KtI and for any g ∈ G there

is t ∈ T− such that gItI ⊂ KT−I. Using the lemma, as in the proof of [KS12, Thm.

2.5], we have TorH
′

q (H′/m′, c-IndGIZW) ≃ TorH
′

q (H′/m′, c-IndGIZW ⊗H′ H′[ 1
Utα−1 , α ∈ ∆]) ≃

TorH
′

q (H′/m′, c-IndGIZW(G−)) where G− = KT−IZ =
∐

m∈N∆ K
∏

α t
mα
α IZ and

c-IndGIZW(G−) := [G−,W] ⊂ c-IndGIZW.

We remain to show that Utα − 1, α ∈ ∆ form a regular sequence on c-IndGIZW(G−) as in
[KS12, Thm. 2.6] for an arbitrary ordering α1, · · · , α|∆| of ∆. We prove by induction on

https://stacks.math.columbia.edu/tag/0621


10 MATTHIAS STRAUCH AND ZHIXIANG WU

1 ≤ j ≤ |∆|. Suppose that (Utαj
− 1)f =

∑j−1
i=1 (Utαi

− 1)f i for some f, f1, · · · , f i−1 ∈
c-IndGIZW(G−). Then formally in

∏
g∈G−/IZ [g,W], f =

∑j−1
i=1 (Utαi

− 1)(Utαj
− 1)−1f i =∑j−1

i=1 (Utαi
− 1)

∑
k≥0(−1)Uk

tαj
f i. Consider

Vr =
∐

m∈N∆,mαj=r

Kt
mα1
α1 · · · t

mα|∆|
α|∆| IZ.

Then Utαj
: [Vr,W] → [Vr+1,W] and Utαi

− 1 : [Vr,W] → [Vr,W] for i ̸= j by [KS12, Lem.

1.3]. Let gi =
∑

k≥0(−1)Uk
tαj
f i. Write f =

∑
r≥0 f

(r) and gi =
∑

r≥0 g
i,(r) where f (r), gi,(r) ∈

[Vr,W] ⊂ c-IndGIZW(G) (this is possible since f, f i are compactly supported modulo Z). There

exists s such that f (r) = 0 for all r ≥ s. Then f =
∑j−1

i=1 (Utαi
−1)

∑s
r=0 g

i,(r), which implies that

f lies in the subspace of c-IndGIZW(G−) generated by images of Utαi
− 1, i = 1, · · · , j − 1. □

Corollary 2.3. Let W1 ↪→ W2 be an injection of IT+I-representations equipped with the cor-
responding ψt-actions. Then the induced H-modules map c-IndGI W1 → c-IndGI W2 induces an
injection

c-IndGI W1 ⊗H H/m ↪→ c-IndGI W2 ⊗H H/m.
Proof. By Proposition 2.2, TorH1 (H/m, c-IndGI (W2/W1)) = 0. □

Now we consider parabolic inductions. Let U be a locally analytic representation of the torus
T inflated to a representation of B with the same notation. Recall the locally analytic parabolic
induction IndGBU as in [Eme07, §2.1]:

IndGBU = {f ∈ Cla(G,U) | f(bg) = b.f(g), ∀b ∈ B}
with the action of G given by right translations. For an open subset V ∈ B\G, e.g., V = BI,
let IndGBU(V ) ⊂ IndGBU be the subspace consisting of functions supported in V . Let ResV :
IndGBU → IndGBU(V ), f 7→ f · 1V be the restriction map where 1V denotes the characteristic
function of V .

We take an I-invariant subspaceW ⊂ IndGBU(BI) such that for any t ∈ T−, ResBI(t
−1.W) ⊂

W as subspaces of IndGBU(BI).

Definition 2.4. In the above situation, we set

ψt :W →W, f(−) 7→ ResBI(t
−1.f) = ResBI(f(−t−1)) = f(−t−1)1BI

for t ∈ T−. And let Ut ∈ T− be the corresponding Hecke operator.

Remark 2.5. Our definition of ψt is slightly different from that of [KS12], where ψt.f(−) =
ResBIf(t− t−1) = χ(t)ResBI(f(−t−1)) when U is a character χ. Our price is that the represen-
tation c-IndGI W ⊗H H/m depends implicitly on χ(ti), 1 ≤ i ≤ d.

The defined actions satisfy the condition of Lemma 2.1.

Lemma 2.6. In the above definition, we have ψt(xw) = (t−1xt)ψt(w) for x ∈ tIt−1 ∩ I. And
for t1, t2 ∈ T−, ψt1ψt2 = ψt1t2.

Proof. The map ResBI is I-equivariant. Hence ψt(xw) = ResBI(t
−1xw) = ResBI(t

−1xtt−1w) =
(t−1xt)ResBI(t

−1w) = (t−1xt)ψt(w). And ψt1ψt2f = ψt2(f(−t−1
1 )1BI) = f(−t−1

2 t−1
1 )1BIt21BI =

f(−t−1
2 t−1

1 )1BI since BIt2 ⊃ BI. □
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By the Frobenius reciprocity, there is G-map

(2.2) ΦW : c-IndGI W → IndGBU : [g, w] 7→ g.w.

Proposition 2.7. For t1, t2 ∈ T−, Ut1t2 = Ut1Ut2 making c-IndGI W an H-module. Moreover,
the map (2.2) factors through an injection

c-IndGI W ⊗H H/m ↪→ IndGBU.

Proof. The first statement is Lemma 2.1 and Lemma 2.6. The proof for the injection is the
same as for [KS12, Prop. 2.4]. We first recall the key input [KS12, Prop. 1.2]: suppose that
t ∈ T−, k, k′ ∈ K such that ktIB ∩ k′tIB ̸= ∅, then ktIB = k′tIB, ktI = k′tI and kI = k′I (the
proof of loc. cit., which cites [SS91, §4, Prop. 7], works for the general split reductive group G).

We check that for t ∈ T−

ΦW(Ut[g, w]) =
∑

xtI∈ItI/I

gxt.ψt(x
−1w) =

∑
xtI∈ItI/I

gxt.(t−1x−1w · 1BI)

=
∑

xtI∈ItI/I

gxtt−1x−1(w1BIt−1x−1) = g.w = ΦW([g, w])

since BI =
∐

It−1x−1∈It−1I/I BIt
−1x−1 (by [KS12, Prop. 1.2] and I/(I ∩ tIt−1) = (I ∩N)/t(I ∩

N)t−1).
By definition, we have Uz[g, w] = [gz, z−1.w] for z ∈ Z,w ∈ W. Hence ΨW factors through

c-IndGI W/(Uz1 − 1, · · · , Uzd−|∆| − 1) ≃ c-IndGIZW where the action of the center Z on W comes

from the embeddingW ⊂ IndGBU . The quotient c-IndGIZW inherits the actions of Utα , α ∈ ∆. We
only need to show that the kernel of Φ′

W : c-IndGIZW → IndGBU lies in the subspace V spanned
by (Utα − 1)[g, w] for g ∈ G,w ∈ W and α ∈ ∆. The proof goes as for [KS12, Prop. 2.4], and
we give a sketch in our notation. By [KS12, Lem. 1.4] (recalled in the proof of Proposition 2.2),
G =

∐
t∈T/T0Z

KtIZ and for any g ∈ G, there exists t ∈ T− such that gItI ⊂ KT−I. Assume

that f ∈ ker(Φ′
W) and we prove that f ∈ V. Since Ut([g, w]) ⊂ [gItIZ,W] and V ⊂ ker(Φ′

W),
we may assume that f ∈ [KT−IZ,W]. Since Kt1I · It2I ⊂ Kt1t2I, up to add elements in
V, we may assume that f ∈ [KtnIZ,W] for some n large enough and t =

∏
α tα. Write

KtnIZ =
∐

j∈J kjt
nIZ and f =

∑
j [kjt

n, wj ]. Then Φ′
W(f) =

∑
j kjt

n.wj ∈ IndGBU . The

support of each kjt
n.wj as a function on G is contained in BI(kjt

n)−1 = (kjt
nIB)−1 which are

pairwisely disjoint for different j by [KS12, Prop. 1.2] recalled above. Hence Φ′
W(f) = 0 implies

that wj = 0 for all j. We conclude that f = 0. □

2.2. Change the levels. For the actual application to the duality (Theorem 3.21), we need the
flexibility to shrink (or change) the Iwahori subgroup I to other open compact subgroups of G
for the compact inductions in the Kohlhaase-Schraen resolutions. In this subsection, I denotes
an open compact subgroup such that K ∩ T ⊂ I ⊂ K admitting the Iwahori decomposition
I = (I ∩ N)(I ∩ T )(I ∩ N). For example, we can take I to be the opposite Iwahori subgroup.
We still let H = E[T−/(T ∩K)] ⊃ m = (Uti − 1)i=1,··· ,d. The discussions on Hecke operators at

the beginning of §2.1, including Lemma 2.1, apply for the compact induction c-IndGI W which
will be a H-module if W is an IT+I-module equipped with the corresponding ψt-actions.
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Remark 2.8. One can also shrink the torus T ∩ I: take I ′ such that I ′ ∩T ⊊ I ∩T and replace
H by the algebra E[T−/(I ′ ∩ T )]. See [Oll14] for the example when I ′ is the pro-p Iwahori
subgroup.

We first take a subgroup I ′ such that T ∩K ⊂ I ∩B ⊂ I ′ ⊂ I with the Iwahori decomposition
such that

(2.3) I ′/(tI ′t−1 ∩ I ′) = I/(tIt−1 ∩ I) = (I ∩N)/t(I ∩N)t−1, ∀t ∈ T−.

This assumption implies that BI ′ = BI = B(I ∩N).

Example 2.9. We can and will take I ′ = (I ∩N)(I ∩ T )(I ∩N) = I ∩ I where I is the Iwahori
subgroup and I is the Iwahori subgroup for the opposite Borel B.

Suppose thatW is a representation of IT+I with operators ψt, t ∈ T− satisfying the condition
of Lemma 2.1. We consider W ′ := W|I′ . Then operators ψt still act on W ′. We can similarly
define Hecke operators Ut acting on c-IndGI′W ′ as in (2.1) for t ∈ T− making c-IndGI′W ′ an

H-module. We get a Koszul complex ∧•Hd ⊗H c-IndGI′W ′.

Conversely, suppose thatW ′ is a representation of I ′T+I ′ with ψt-actions andW = c-IndII′W ′.

Lemma 2.10. There are ψt-actions on c-IndII′W ′ satisfying the condition of Lemma 2.1 such
that

ψt[g, w] = [t−1gt, ψt(w)]

for [g, w] ∈ c-IndII′W ′, g ∈ I ∩N and (t−1xt)ψt(−) = ψt(x−) for x ∈ I ∩ tIt−1.

Proof. Since c-IndII′W ′ = ⊕g∈I/I′ [g,W] and I/I ′ = (I ∩ N)/(I ′ ∩ N), ψt is already defined by

the formula and we check it is well-defined. For n ∈ B∩ I ′, ψt[gn, n
−1w] = [t−1gnt, ψt(n

−1w)] =
[t−1gt, t−1ntψt(n

−1w)] = [t−1gt, ψt(w)] since n ∈ I ′ ∩ tI ′t−1. For x ∈ I ∩ tIt−1 and g ∈ I ∩N ⊂
I∩ tIt−1, we can write xg = g′i′ for g′ ∈ I∩N, i′ ∈ I∩B = I ′∩B. Since g′, g′i′ = xg ∈ I∩ tIt−1,
we see i′ ∈ B ∩ I ∩ tIt−1 = t(I ∩ B)t−1. Then ψt[xg,w] = ψt[g

′, i′.w] = [t−1g′t, ψt(i
′w)] =

[t−1g′t, t−1i′tψt(w)] = [t−1xgt, ψt(w)] = t−1xt[t−1gt, ψt(w)] = (t−1xt)ψt([g, w]). □

Proposition 2.11. Let T ∩K ⊂ I ′ ⊂ I be subgroups with the Iwahori decomposition satisfying
(2.3).

(1) If W ′ = W|I′ with the restricted ψt-actions, then there is an H-equivariant morphism
c-IndGI′W ′ → c-IndGI W which induces a quasi-isomorphism

∧•Hd ⊗H c-IndGI′W ′ → ∧•Hd ⊗H c-IndGI W.

(2) If W = c-IndII′W ′ with the induced ψt-actions given by Lemma 2.10, then there is an

H-equivariant isomorphism c-IndGI′W ′ ≃ c-IndGI W which induces a quasi-isomorphism

∧•Hd ⊗H c-IndGI′W ′ → ∧•Hd ⊗H c-IndGI W.

Proof. (1) The map c-IndGI′W ′ → c-IndGI W, denoted by pr, is induced by the Frobenius reci-

procity applying to the I ′-inclusion W ′ = [I,W]|I′ ⊂ (c-IndGI W)|I′ . It is also induced by
c-IndII′W ′ → W :

∑
i∈I/I′ [i, wi] 7→

∑
i∈I/I′ iwi. Then pr([g, [i, w]]) = [g, iw] = [gi, w] for

g ∈ G, [i, w] ∈ c-IndII′W ′. We see pr([g, w]) = [g, w] for g ∈ G,w ∈ W ′.

Let t ∈ T−, w ∈ W ′ and [i, w] ∈ c-IndII′W ′ ⊂ c-IndGI′W ′. Then by definition Ut[i, w] =∑
a∈(I∩N)/t(I∩N)t−1 [iat, ψt(a

−1w)]. While for [1, iw] ∈ c-IndGI W and i ∈ I, Ut[1, iw] = Ut[i, w] =



BERNSTEIN-ZELEVINSKY DUALITY FOR LOCALLY ANALYTIC PRINCIPAL SERIES 13∑
a∈(I∩N)/t(I∩N)t−1 [iat, ψt(a

−1w)]. By the explicit formula, the morphism pr commutes with the

operator Ut. The kernel of pr is spanned by G-translations of elements
∑

i∈I/I′ [i, wi] such that∑
i∈I/I′ iwi = 0. If i ∈ I and a ∈ I ∩N , write (uniquely) ia = aixa,i such that ai ∈ I ∩N and

xa,i ∈ I ∩B ⊂ I ∩ tIt−1. Then t−1xa,itψt(a
−1wi) = ψt(xa,ia

−1wi) = ψt(a
−1
i iwi). Suppose that t

is chosen such that t−1(I ∩ B)t ⊂ I ′ (this is possible since I ∩ T = I ′ ∩ T by our assumption).
In this case we have

Ut(x) =
∑

i∈I/I′

∑
a∈(I∩N)/t(I∩N)t−1

[iat, ψt(a
−1wi)] =

∑
i,a

[ait, ψt(a
−1
i iwi)] =

∑
a′

∑
i

[a′t, ψt(a
′−1iwi)] = 0

for x =
∑

i∈I/I′ [i, wi] in the kernel of pr so that
∑

i iwi = 0. For the third equality we used

that when a ranges over (I ∩N)/t(I ∩N)t−1 = I/(I ∩ tIt−1), ai(I ∩ tIt−1) = i−1a(I ∩ tIt−1) ∈
I/(I ∩ tIt−1) ranges over the same set.

Let H′ = E[U±
ti
, i = 1, · · · , d]. The fact that Ut(x) = 0 for x ∈ ker(pr) implies that pr induces

an H′-isomorphism: c-IndGI′W ′⊗HH′ ≃ c-IndGI W⊗HH′. The map pr also induces a map of the
Koszul complexes

∧•Hd ⊗H c-IndGI′W ′ → ∧•Hd ⊗H c-IndGI W.

The induced maps of homologies are TorH• (H/m, c-IndGI′W ′)→ TorH• (H/m, c-IndGI W) which are

isomorphisms since for any H-module M , TorH• (H/m,M) ≃ TorH
′

• (H′/m,M ⊗HH′) [Sta24, Tag
00M8]).

(2) Since c-IndGI′W ′ = c-IndGI W, we only need to check that the Hecke actions coincide.

Take t ∈ T−. Suppose that [g, w] ∈ c-IndGI′W ′ and g ∈ I. For x ∈ I ∩ N = I ′ ∩ N , we
can write gx = x′g′ where x′ ∈ I ∩ N and g′ ∈ I ∩ B ⊂ I ∩ tIt−1. Then [gxt, ψt(x

−1w)] =
[x′g′t, ψt(x

−1w)] = [x′t, [t−1g′t, ψt(x
−1w)]] = [x′t, ψt([(x

′)−1g, w])]. Note that when x ranges
over I ∩N/t(I ∩N)t−1 = I/(I ∩ tIt−1), x′ ranges over the same set. Hence

Ut[g, w] =
∑

x∈I′/(I′∩tI′t−1)

[gxt, ψt(x
−1w)] =

∑
x∈I/(I∩tIt−1)

[xt, ψt([x
−1g, w])].

The result follows by definitions. □

Corollary 2.12. Let I be the Iwahori subgroup andW ′ be an I ′-subrepresentation of IndGBU(BI)
(in the notation of Proposition 2.7) that is stable under the operators ψt : f 7→ f(−t−1) ·1BI for
all t ∈ T−. Then the induced map c-IndGI′W ′ → IndGBU factors through an injection

c-IndGI′W ′ ⊗H H/m ↪→ IndGBU.

Proof. Write W0 = IndGBU(BI). Let

W ′′ := coker(c-IndII′W ′ → c-IndII′W0|I′) = c-IndII′coker(W ′ →W0|I′)
with the induced ψt-actions. We have a short exact sequence of H-modules

0→ c-IndGI′W ′ → c-IndGI′W0|I′ → c-IndGI W ′′ → 0.

By (the proof of) Proposition 2.2, TorH1 (H/m, c-IndGI W ′′) = 0. Hence by Proposition 2.7 and
Proposition 2.11, the composite

c-IndGI′W ′ ⊗H H/m ↪→ c-IndGI′W0|I′ ⊗H H/m ≃ c-IndGI W0 ⊗H H/m ↪→ IndGBU

is an injection. □

https://stacks.math.columbia.edu/tag/00M8
https://stacks.math.columbia.edu/tag/00M8
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We will also need the case when T ∩K ⊂ I ′ ⊂ I, I ′∩N ⊊ I ∩N while I ′∩N = I ∩N . Let W
be an IT+I-representation as before and let W ′ = W|I′T+I′ with the restriction of ψt-actions
satisfying the condition of Lemma 2.1.

Proposition 2.13. In the above situation, there is an H-equivariant morphism c-IndGI W →
c-IndGI′W ′ which induces a quasi-isomorphism

∧•Hd ⊗H c-IndGI W → ∧•Hd ⊗H c-IndGI′W ′.

Proof. There is a natural I-injection

W ↪→ IndII′W|I′ ≃ c-IndII′W|I′ : w 7→
1

|I/I ′|
∑

x∈I/I′
[x, x−1w].

Write ι for the induced map c-IndGI W ↪→ c-IndGI′W ′. We see that

|I/I ′|ι(Ut[g, w]) =
∑

h∈I/I′
∑

x∈I/(I∩tIt−1)[gxth, h
−1ψt(x

−1w)]

=
∑

tht−1∈tIt−1/tI′t−1

∑
x∈I/(I∩tIt−1)[gx(tht

−1)t, h−1ψt(x
−1w)]

=
∑

x∈(I∩N)/t(I′∩N)t−1 [gxt, ψt(x
−1w)].

where we used that I/(I ∩ tIt−1) = (I ∩ N)/t(I ∩ N)t−1, I/I ′ = (I ∩ N)/(I ′ ∩ N), and
h−1ψt(x

−1w) = ψt(th
−1t−1x−1w) if th−1t−1 ∈ t(I ∩N)t−1 ⊂ I ∩ tIt−1. While

|I/I ′|Utι([g, w]) =
∑

h∈I/I′

∑
x∈I′/(I′∩tI′t−1)

[ghxt, ψt(x
−1h−1w)] =

∑
x∈I/(I′∩tI′t−1)

[gxt, ψt(x
−1w)].

Hence ι is H-equivariant. For any [1, w] ∈ c-IndGI′W ′, we have

Ut[1, w] =
∑

x∈(I′∩N)/t(I′∩N)t−1

[xt, ψt(x
−1w)] =

∑
x∈t−1(I′∩N)t/(I′∩N)

[tx, ψt(tx
−1t−1w)].

Take t ∈ T− such that I ∩N ⊂ t−1(I ′ ∩N)t. Then we can write the last term as∑
x∈t−1(I′∩N)t/(I∩N)

∑
y∈(I∩N)/(I′∩N)

[txy, ψt(ty
−1t−1tx−1t−1w)]

=
∑

x∈t−1(I′∩N)t/(I∩N)

∑
y∈(I∩N)/(I′∩N)

[txy, y−1ψt(tx
−1t−1w)]

since ty−1t−1 ∈ I ∩ tIt−1. Now∑
y∈(I∩N)/(I′∩N)

[txy, y−1ψt(tx
−1t−1w)] =

∑
y∈I/I′

[txy, y−1ψt(tx
−1t−1w)] = ι([tx, ψt(tx

−1t−1w)])

lies in the image of ι. We conclude that Ut annihilates coker(ι). Using the argument as for (1)
of Proposition 2.11, the quasi-isomorphism follows. □

Remark 2.14. Proposition 2.13 is the representation theoretic analog of [Eme06, Prop. 3.4.11].
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2.3. Examples. We first recall the examples in [KS12]. Let χ : T → E× be a continuous
character. We take good open normal subgroups In = In(L), n ≥ 1 of I which admit Iwahori
decompositions. Fix n large enough such that χ is rigid analytic on T ∩ In. Then Kohlhaase-
Schraen takes the I-subspace

W♯,n := IndGBχ(BI)
In−an ⊂ IndGBχ

the subspace of In-rigid analytic functions in IndGBχ that are supported on the open subset

BI. Since CIn−an(I, E) = C(In∩B)−an(I ∩ B,E)⊗̂EC(In∩N)−an(I ∩ N,E), we see as an I ∩ N -

representation, W♯,n can be identified with C(In∩N)−an(I ∩ N,E) the space of In ∩ N -analytic

functions on I ∩N . As t−1(I ∩N)t ⊃ I ∩N for t ∈ T−, there is a factorization

ResBI ◦Ad(t) : C(In∩N)−an(I ∩N,E)→ Ct−1(In∩N)t−an(t−1(I ∩N)t, E)→ C(In∩N)−an(I ∩N,E).

Since f(−t−1) = χ(t)−1f(t− t−1), the map ψt in Definition 2.4 stabilizes W♯,n.

Proposition 2.15 ([KS12, Prop. 2.4]). For W♯,n as above, the map ΦW♯,n
: c-IndGI W♯,n →

IndGBχ is surjective. And ΦW♯,n
induces a quasi-isomorphism (see also Proposition 2.7 and

Proposition 2.2)

∧•Hd ⊗H c-IndGI W♯,n ≃ IndGBχ.

Corollary 2.16. For any sub I-representation W♯ such that there exists m ≥ n and inclusions
W♯,n ⊂ W♯ ⊂ W♯,m and W♯ is stable under ψt for all t ∈ T−, the map ΦW♯

induces a quasi-
isomorphism

∧•Hd ⊗H c-IndGI W♯ ≃ IndGBχ.

Proof. Use Proposition 2.7, Proposition 2.2 (Corollary 2.3) and the surjectivity of ΦW♯,n
. □

We now give examples of W♯ that satisfy the assumption of Corollary 2.16, whose duals will
be more convenient for us. Take an open normal subgroup H ⊂ I with Iwahori decomposition
H = (H ∩ N)(H ∩ T )(H ∩ N) and such that H is uniform pro-p, see [ST03, §4] and the
proof of [OS15, Thm. 5.5]. Equip H with a p-valuation ω and ordered basis h1, · · · , hdH for
dH = dimQp H compatible with the Iwahori decomposition and root groups, see [OS10, §3.3.3].
The ordered basis induces ZdH

p ≃ H as p-adic manifolds. Upon shrinking H, we assume that
ω(h1) = · · · = ω(hdH ) = ω ∈ N using the method in [Laz65, Prop. III.3.1.3].

The distribution algebra D(H,E) is the continuous dual of Cla(H,E). We consider its Banach
completions

Dr(H,E) = {
∑

α∈NdH

dαb
α | dα ∈ E, lim

α→∞
|dα|pr

∑
i αiω(hi) = 0}

for r < 1 where bi = hi − 1 and bα = (h1 − 1)α1 · · · (hdH − 1)αdH . Since I normalizes H, the
conjugation of x ∈ I induces an automorphism of Dr(H,E) (see the discussion in the proof of
[ST03, Thm. 5.1]). We let Dr(I, E) = E[I]⊗E[H]Dr(H). Let Cr(I, E) be the continuous E-dual
of Dr(I, E) with the open compact topology, a Smith space with an open compact lattice over
OL. Then Cr(I, E) =

∏
g∈I/H g.Cr(H,E) where

Cr(H,E) = {
∑

α∈NdH

cα

(
x1
α1

)
· · ·

(
xdH
αdH

)
| sup

α
|cα|pr−

∑
i αiω(hi) < +∞}
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for x = (x1, · · · , xdH ) ∈ ZdH
p ≃ H in terms of Mahler’s basis. Moreover, similarly as to

C(In∩N)−an(I, E), we have (cf. [RJRC22, Thm. 3.40 (2)] and [OS10, Prop. 3.3.4])

Cr(I, E) = (Dr(I, E))′ = (Dr(B ∩ I, E)⊗̂EDr(I ∩N,E))′ = Cr(B ∩ I, E)⊗̂ECr(I ∩N,E).

By [Laz65, III.1.3.8] (and see also [RJRC22, §4.1.3]), Cr(I, E) ⊃ CIm−an(I, E) for r sufficiently
close to 1. We set

W♯,r := IndGBχ(BI) ∩ Cr(I, E).

Then W♯,m ⊂ W♯,r for r sufficiently close to 1.

Lemma 2.17. The operator ψt in Definition 2.4 stabilizes W♯,r for r < 1 sufficiently close to
1. Hence the conclusion of Corollary 2.16 holds for such W♯,r.

Proof. As in the case for CIn−an(I, E) and W♯,n, we need to show that if f ∈ Cr(I ∩N,E), then

ResI∩N (f(t − t−1)) is still in Cr(I ∩N,E). Since I ∩N is a product of its root subgroups and
the conjugation of t acts on each of them, we reduce to prove the similar result for OL ⊂ L =
Gm/L(L) and for the action of ϖL on OL or Cr(OL, E), namely to show that f(−) 7→ f(ϖL−)
sends Cr(OL, E) into Cr(OL, E) ⊂ C(OL, E). Choose a Zp-basis 1 = e1, · · · , edL of OL with

coordinates x1, · · · , xdL ∈ Zp. Then ×ϖL factors as OL
τ→ ZdL

p
η→ OL = ZdL

p where τ is a Zp-
linear automorphism of OL and η : (x1, · · · , xdL) 7→ (pa1x1, · · · , padLxdL). Since the definition
of Dr(OL, E), as well as Cr(OL, E), is independent of the choice of ordered basis, τ induces an
automorphism of Cr(OL, E) and we may assume that L = Qp and ϖL = p. For simplicity, we

assume that ω(1) = 1. Take n such that p
− p−n

p−1 < r ≤ p
− p−(n+1)

p−1 . Then CpnZp−an(Zp, E) ⊂

Cr(Zp, E) ⊂ Cpn+1Zp−an(Zp, E) = {
∑

α≥0 cα
(
x
α

)
| lim−→α→+∞ |cα|pp

p−(n+1)α−s(α)
p−1 = 0} by [Laz65,

III.1.3.8] where s(
∑
αip

i) =
∑

i αi if αi ∈ {0, 1, · · · , p− 1}. The result follows. See also [JN19,
Cor. 3.3.10] and Lemma 3.17 for the dual version. □

3. Dual complexes

In this section, we establish the main theorem on resolutions of representations constructed
from the functor FG

B in [OS15] (Theorem 3.15) and study the duality between these complexes
(Theorem 3.21).

3.1. Banach modules over the distribution algebras. We recall the definitions of various
distribution algebras and use them to construct locally analytic I-representations as a continu-
ation of §2.3.

Let D(g, B ∩ I) be the subalgebra U(g)D(B ∩ I, E) generated by U(g) and D(B ∩ I, E) inside
D(I, E), which was considered in [OS15, §3.4] or [SS16, §4]. Define similarly D(g, B). Note that
D(g, B ∩ I) = U(g)⊗U(b) D(B ∩ I) [OS15, Prop. 3.5].

Definition 3.1. If M is D(g, B)-module such that M is finitely presented over U(g) and B acts
locally finitely (i.e., M is the union of its finite-dimensional B-subspaces), we let

W♮,r(M) := Dr(I, E)⊗D(g,B∩I) M.
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Since M is assumed to be a finitely presented D(g, B ∩ I)-module, W♮,r(M) is a finitely
presented Dr(I, E)-module.

By definition, Dr(I, E) = E[I]⊗E[In] Dr(H,E) while

Dr(H,E) = E[H]⊗E[Hm] Drpm (Hm) = E[H]⊗E[Hm] Ur(g)

for m such that 1
p < rp

m
< p

− 1
p−1 ([OS15, (5.5.6)] for p ≥ 2) where Ur(g) is the closure of

U(g) in Dr(I, E). Moreover, by [OS15, Sublemma 5.6], the closure of D(g, B ∩ I) in Dr(I, E) is
a subring Dr(g, B ∩ I) such that Dr(I, E) = ⊕I/Hm(B∩I)δgDr(g, B ∩ I) where δg denote Dirac

distributions and Hm(B ∩ I) = H(B ∩ I) ∩ Dr(g, B ∩ I).
For M in Definition 3.1, we write M r := Ur(g) ⊗U(g) M = Dr(g, B ∩ I) ⊗D(g,B∩I) M ([SS16,

Lem. 4.6]). Then we get
W♮,r(M) = ⊕g∈I/Hm(B∩I)δrM r.

Note that Û(g) = lim←−r
Ur(g) is a Fréchet-Stein algebra with the Fréchet-Stein structure (cf.

[ST03, §3], [SS16, Prop. 4.8]). Let M̂ := Û(g) ⊗U(g) M = lim←−r
M r. Similarly, D(I, E) =

lim←−r
Dr(I, E).

Lemma 3.2. The functors M 7→ W♮,r(M) are exact on M that are finitely presented as U(g)-

modules and W♮,r(M) ̸= 0 for r sufficiently close to 1. Moreover, if M is a simple U(g)-module,

then M r is a simple Ur(g)-module.

Proof. The exactness follows from the flatness of Ur(g) over Û(g) by [ST03, Rem. 3.2] and that

Û(g) is flat over U(g) [Sch13a, Thm. 4.3.3]. The simplicity of M r when M is simple is well
known [OS15, Thm. 5.7] and we give a sketch. We may suppose that M r ̸= 0 (cf. [Sch13a,
Lem. 4.3.6]), hence M ⊂ M r. Let 0 ̸= N ⊂ M r be a sub-Ur(g)-module. We may assume that
N is finitely generated since Ur(g) is a Noetherian Banach algebra, N is closed in M r equipped
with the induced canonical Banach topology. One then shows that the t-weight spaces of N are
contained inM , cf. [FdL99, Cor. 1.3.22] or see [Sch13a, Prop. 2.0.1]. If N ̸= 0, then N contains
M and N =M r. □

Lemma 3.3. Suppose that t ∈ T− and M is a D(g, B)-module such that M |U(g) ∈ Ob
alg ([OS15,

Def. 2.6]) and is locally B-finite. The action of the Dirac distribution δt−1 ∈ D(g, B) on M
extends continuously to a map M r → M r and induces an operator ψt : W♮,r(M) → W♮,r(M)
satisfying (t−1xt)ψt(−) = ψt(x−), ∀x ∈ I ∩ tIt−1.

Proof. The D(g, B)-module M admits a presentation

D(g, B)⊗D(B,E) σ
′ → D(g, B)⊗D(B,E) σ →M → 0

where σ, σ′ are finite-dimensional B-representations over E. This is possible since B acts on M
locally finitely and the same statement holds for D(g, B)⊗D(B,E) σ = D(g, B ∩ I)⊗D(B∩I,E) σ =

U(g)⊗U(b) σ. By base change we get the exact sequence

Dr(g, B ∩ I)⊗D(B∩I,E) σ
′ → Dr(g, B ∩ I)⊗D(B∩I,E) σ →M r → 0.

To extend the action of δt−1 to M r, it’s enough to verify the existence of the extensions for
Dr(g, B ∩ I)⊗D(B∩I,E) τ = Ur(g)⊗U(b) τ , τ = σ, σ′ (and use the uniqueness of such extensions).
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While Ur(g) ⊗U(b) τ = Ur(g) ⊗Ur(b)
τ = Ur(n) ⊗E τ using Ur(g) = Ur(n)⊗̂EUr(b). We can get

the δt−1-action on Ur(n) ⊗E τ since δt−1Ur(n) ⊂ Ur(n)δt−1 for t ∈ T− and τ is B-stable. As
an I-representation, W♮,r(M) = c-IndI

Hm(B∩I)M r. The ψt-operator on W♮,r(M) is defined using

Lemma 2.10. □

3.2. The resolution for principal series. We continue with the principal series IndGBχ from
§2.3 and with the notation there. We will construct I-representations W♮,r for IndGBχ that do
not satisfy the assumption but might satisfy the conclusion of Corollary 2.16. Let λ = wt(χ) ∈
(Ed)[L:Qp] be the weight of the locally analytic character χ. We assume that λ ∈ (Zd)[L:Qp],
namely χ is locally algebraic.

Consider the subspace Cpol(I ∩N,E) = Cpol(N,E)1I∩N ⊂ W♯,r ⊂ IndGBχ consisting of poly-

nomial functions on I ∩N , identified to the coordinate ring of (ResL/Qp
N)⊗Qp E. By [Eme07,

Lem. 2.5.8], Cpol(I ∩ N,E) is a D(g, B)-module. Actually, by the explicit description in loc.
cit. (see also Remark 3.4 below), its restriction to U(g) is the dual Verma module M(λ)∨ in the

category Ob (the BGG dual of the Verma module of the highest weight λ) when restricted to g.
In the following, we write M(λ)∨ for the D(g, B)-module Cpol(I ∩N,E).

More generally, by [Bre15, Prop. 3.6], there exists a natural injection of (g, B ∩ I)-modules
(where M ∈ Ob

alg and χsm is a smooth character of T , see more in §3.3),

(3.1) HomE(M,E)n
∞
B ⊗E χsm ↪→ HomE(M,E)n

∞
B ⊗ C∞c (N,χsm) ⊂ FG

B (M,χsm).

Here HomE(M,E) is a g-module induced by the g-action on M and the involution of g given by
multiplying −1. The superscript n∞

B
denotes the subspace of elements killed by finite powers of

nB = n. The first injection of (3.1) sends χsm to the constant function 1I∩N on I ∩N . And the
image of the last injection is the space of locally polynomial functions compactly supported on

N inside FG
B (M,χsm) [Bre15, (16) & Prop. 3.6]. The image of HomE(M,E)n

∞
B ⊗E χsm in W♯,r

(see §2.3) consists of polynomial functions on I ∩N .

Remark 3.4. We have IndGBχ = FG
B (M(−λ), χsm) in the notation of [OS15]. There are isomor-

phisms of U(g)-modules (in the last identity the involution of multiplying −1 of g switches left
and right U(b)-modules)

Cpol(I ∩N,E) ≃ Sym•(n∨) ≃ HomE(U(g)⊗U(b) χ
−1, E)n

∞
= HomU(b)(U(g), χ)n

∞
.

Note that Hom(U(g) ⊗U(b) (−λ), E)n
∞
B is the dual Verma module in Ob for the Verma module

U(g) ⊗U(b) λ ∈ O
b. (According to [Hum08, §3.2], (U(g) ⊗U(b) λ)

∨ is constructed by taking the

left U(g)-module HomE(U(g)⊗U(b) λ,E)n
∞
B and then composing with the Chevalley involution

(inverse transpose) of g.)

Since W♯,r, as well as its dual, is a Dr(I, E)-module, extending the module structure over

D(I, E), the D(g, B ∩ I)-map M(λ)∨ ↪→W♯,r from (3.1), extends to a continuous map

iW♮,r
:W♮,r :=W♮,r(M(λ)∨) = Dr(I, E)⊗D(g,B∩I) M(λ)∨ →W♯,r ⊂ IndGBχ.

Lemma 3.5. The map iW♮,r
: W♮,r → W♯,r is ψt-equivariant for t ∈ T−, where the ψt-actions

on W♮,r are given by Lemma 3.3 for the D(g, B)-module Cpol(I ∩N,E) ≃ Cpol(N,E).
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Proof. Write M for M(λ)∨. For f ∈ Cpol(N,E)
ResBI→ Cpol(I ∩ N,E), ψt is just the action of

t−1 on the D(g, B)-module Cpol(N,E) (composed with ResBI on Cpol(I ∩ N,E)). Hence the
map M ↪→ IndGBχ(BI) from (3.1) is ψt-equivariant by Definition 2.4. By continuity, the same
holds for M r ⊂ W♮,r(M) → IndGBχ(BI). For [g, f ] ∈ W♮,r(M) = c-IndI

Hm(B∩I)M r, the element

ψt(iW♮,r
([g, f ])) ∈ IndGBχ(BI), where g ∈ N ∩ I, is equal to f(−t−1g) · 1BI . While (see Lemma

2.10)

iW♮,r
([t−1gt, ψt(f)]) = (t−1gt)(f(−t−1)1BI) = f(−(t−1gt)t−1)1BI = f(−t−1g)|BI

since t−1gt ∈ I if g ∈ N ∩ I and t ∈ T−. Hence iW♮,r
is ψt-equivariant. □

Proposition 3.6. The map ΦW♮,r
: c-IndGI W♮,r → IndGBχ induced by iW♮,r

factors through an
injection (where H,m are given in §2.1 )

c-IndGI W♮,r ⊗H H/m ↪→ IndGBχ.

Proof. By the discussion before Lemma 3.2, c-IndGI W♮,r = c-IndGI′(M(λ)∨)r where I ′ = Hm(B ∩
I) contains I ∩ B with the Iwahori decomposition. Since the map M(λ)∨ ↪→ W♯,r is injective,

so is the map (M(λ)∨)r ↪→ W♯,r as (M(λ)∨)r has the same length over Ur(g) as the length

of M(λ)∨ over U(g) by Lemma 3.2. Moreover, the ψt-actions on W♮,r given by Lemma 3.3 is

the one in §2.2 induced from the ψt-actions on (M(λ)∨)r. Apply (2) of Proposition 2.11 and
Corollary 2.12 for W ′ = (M(λ)∨)r, we get the injectivity. □

Remark 3.7. If M(λ)∨ is simple, then the module W♮,r is topologically of finite length as a

Dr(I, E)-module, with the same length as the U(g)-module M(λ)∨ by results in [OS15]. In this
case the map iW♮,r

is injective and Proposition 3.6 follows directly from Proposition 2.7. But

this is not true in general. It may happen that M ⊂ M(λ)∨ is a D(g, P ∩ I)-module for some
parabolic subgroup P ⊋ B (for example if χsm is trivial, M = E and P = G). Then the map
Dr(I, E)⊗D(g,B∩I) M →W♯,r factors through the quotient Dr(I, E)⊗D(g,P∩I) M .

3.3. Beyond dual Verma modules. We extend the Kohlhaase-Schraen resolutions for princi-
pal series in the last sections to representations FG

B (M) constructed from some D(g, B)-modules
M in [OS15] extended in [Bre16, Appendice] or [SS16, §4] that we will review below.

Consider a D(g, B)-moduleM such thatM ∈ Ob
alg and such that we can choose a presentation

0→ d→ U(g)⊗U(b) σ →M → 0

for a finite dimensional B-representation σ. For such a presentation and r sufficiently close to 1
(which we will assume from now on), consider

W♯,r(σ
∨) := (IndGBσ

∨)(BI) ∩ Cr(I, σ) ⊂ IndGBσ
∨

where σ∨ = HomE(σ,E) with the subspace topology of Cr(I, σ). The continuous E-dual of
W♯,r(σ

∨) is equal to Dr(I, E)⊗D(B,E) σ. By definition

FG
B (M) = (IndGBσ

∨)d = ((D(G,E)⊗D(B,E) σ)/D(G,E)d)′

where the last superscript denotes the strong dual. Explicitly, the action of x ⊗ y ∈ U(g) ⊗ σ
on IndGBσ

∨ sends f : G→ σ∨ to g 7→ (x · f)(g)(y) ∈ Cla(G,E) where the Lie algebra action x· is
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induced by left G-translations. We also consider

W♮,r(σ
∨) := Dr(I, E)⊗D(g,I∩B) C

pol(I ∩N, σ∨)

where Cpol(I ∩ N, σ∨) is the space of (I ∩ N)-polynomial functions supported on I and with
values in σ∨. Then Cpol(I ∩ N, σ∨) = HomU(b)(U(g), σ∨)n

∞
= HomE(U(g) ⊗U(b) σ,E)n

∞
(see

[Eme07, (2.5.7)] or discussions around (3.1)). As in Lemma 3.5, there is a natural ψt-equivariant
Dr(I, E)-map iW♮,r(σ∨) : W♮,r(σ

∨) → W♯,r(σ
∨) where we equip W♯,r(σ

∨) with the ψt-actions
given by Definition 2.4.

There is a ψt-stable sub-Dr(I, E)-module

W♮,r(τ(M)∨) = Dr(I, E)⊗D(g,B∩I) HomE(M,E)n
∞

of W♮,r(σ
∨) where for short we write τ(M)∨ := HomE(M,E)n

∞
with the usual dual left actions

of U(g) and B. Consider also the I-subspace

W♯,r(τ(M)∨) :=W♮,r(σ
∨)d =W♮,r(σ

∨) ∩ FG
B (M)

ofW♯,r(σ
∨) which is ψt-stable (since the action of d commutes with right translations and restric-

tions onG which are used to define ψt) and has the continuous dual given byDr(I, E)⊗D(g,B∩I)M
(see the proof of [OS15, Prop. 3.11]).

Lemma 3.8. The composite map W♮,r(τ(M)∨) ⊂ W♮,r(σ
∨)

iW♮,r(σ
∨)

→ W♯,r(σ
∨) factors through

a ψt-equivariant I-map iW♮,r(τ(M)∨) : W♮,r(τ(M)∨) → W♯,r(τ(M)∨) ⊂ W♯,r(σ
∨). Moreover,

iW♮,r(τ(M)∨) is independent of the presentations of M and is induced by (3.1).

Proof. Since W♮,r(τ(M)∨) is generated as a Dr(I, E)-module by τ(M)∨ and W♯,r(τ(M)∨) is a

Dr(I, E)-submodule, it’s enough to show that HomE(M,E)n
∞ ⊂ Cpol(I ∩ N, σ∨) is contained

in the subspace W♯,r(σ
∨)d ∩ Cpol(I ∩N, σ∨) = Cpol(I ∩N, σ∨)d. By [Bre15, Lem. 3.3], Cpol(I ∩

N, σ∨)d = HomE(U(g) ⊗U(b) σ,E)n
∞,d = HomE((U(g) ⊗U(b) σ)/d, E)n

∞
. The factorization

follows. The independence of the presentations follows from [Bre15, Prop. 3.4 (ii)]. □

The ψt-equivariant map iW♮,r(σ∨) induces an H-map

c-IndGI W♮,r(σ
∨)→ c-IndGI W♯,r(σ

∨)

together with a G-map (see Proposition 2.7)

ΦW?,r(σ∨) : c-Ind
G
I W?,r(σ

∨)→ c-IndGI W?,r(σ
∨)⊗H H/m→ IndGBσ

∨

for ? ∈ {♮, ♯}. By the above lemma, the map restrict to an H-map

c-IndGI W♮,r(τ(M)∨)→ c-IndGI W♯,r(τ(M)∨)

and finally (use Corollary 2.3)

ΦW?,r(τ(M)∨) : c-Ind
G
I W?,r(τ(M)∨)→ c-IndGI W?,r(τ(M)∨)⊗H H/m→ FG

B (M).

To simplify discussions, we will focus more on subquotients of principal series. Suppose that
χ = zλχsm is a locally algebraic character of T where λ is the weight of χ and χsm is the smooth
part. Then the principal series IndGBχ can be written as FG

B (M) for M = D(g, B)⊗D(B) χ
−1 =

(U(g) ⊗U(b) (−λ)) ⊗E χ−1
sm where B acts diagonally (on the first factor by integration) and g
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acts on the second factor trivially. In the notation of [OS15], FG
B (M ⊗E χ

−1
sm) = FG

B (M,χsm) for

M ∈ Ob
alg with the algebraic B-action. Note that τ(M ⊗E χ

−1
sm)∨ = τ(M)∨ ⊗E χsm.

Proposition 3.9. Suppose that 0 → M0 → M → M1 → 0 is a short exact sequence of U(g)-
modules in Ob

alg and let χsm be a smooth character of T . Then for r sufficiently close to 1, we

have a short exact sequence of complexes for ? = (♮/♯, r):

0→ ∧•Hd ⊗H c-IndGI W?(τ(M1)
∨ ⊗ χsm)→∧• Hd ⊗H c-IndGI W?(τ(M)∨ ⊗ χsm)

→ ∧•Hd ⊗H c-IndGI W?(τ(M0)
∨ ⊗ χsm)→ 0.

Moreover, we have a commutative diagram

0 c-IndGI W?(τ(M1)
∨ ⊗ χsm)/m c-IndGI W?(τ(M)∨ ⊗ χsm)/m c-IndGI W?(τ(M0)

∨ ⊗ χsm)/m 0

0 FG
B (M1, χsm) FG

B (M,χsm) FG
B (M0, χsm) 0

where the rows are exact and all vertical arrows are injective. Moreover if ? = (♯, r), the vertical
maps are isomorphisms.

Proof. The functoriality of W? is similar as in [OS15, Prop. 4.7] or by [Bre15, Prop. 3.4].
The exactness of taking W? is the proof of [OS15, Prop. 4.2] or Lemma 3.2. By Proposition
2.2, the homologies of the Koszul complexes concentrate in degree 0. Hence we get the short
exact sequence of degree 0 homologies. If M is a Verma module, then ΦW♮,r(τ(M)∨⊗χsm) induces

an injection c-IndGI W♮,r(τ(M)∨ ⊗ χsm) ⊗H H/m ↪→ FG
B (M,χsm) by Proposition 3.6. As any

irreducible M in Ob
alg is a quotient of a Verma module, the injectivity of general M follows by

the snake lemma and an induction on the length of M . If ? = (♯, r), the surjectivity follows
similarly using the result of Kohlhaase-Schraen, i.e., Proposition 2.15. □

3.4. The surjectivity. We prove the surjectivity of the map

ΦW♮,r
: c-IndGI W♮,r(M(λ)∨)→ IndGBχ

constructed in §3.2 for locally algebraic characters χ using Proposition 4.11 that will be proved
in §4.3 later. Then we can deduce from the surjectivity the main theorem on Kohlhaase-Schraen
resolutions (Theorem 3.15).

We introduce some notations which serve only for the proof below. The exponential map
exp : n → N is an isomorphism of L-analytic manifolds. Choose basis of n in the root spaces
compatible with the OL-lattice we obtain the L-analytification nan ≃ AdimL N . We obtain
an isomorphism of the analytic spaces N

an ≃ AdimL N with the ball of radius s denoted by
N

an
≤s, satisfying that N

an
≤1(L) = N ∩ K. For h ∈ Z, let Nh = N

an
≤|ϖL|hp (L) which may or may

not be a group. Using the Baker-Campbell-Hausdorff formula, Nh is a normal subgroup of
N ∩ I for h large enough. We say that a function f ∈ Clac (N,E) is h-analytic for some h ≥ 1
large enough if f is rigid analytic on each left Nh-coset. This is equivalent to that f is rigid
analytic on each right Nh-coset since Can(Nhg,E) = Can(gNh, E) for any g ∈ N ∩ I. Let
Ah ⊂ (IndGBχ)(BI) ≃ Cla(I ∩ N,E) be the subspace of functions that are supported on B\BI
and is h-analytic. For h large enough, Ah is the I-representation W♯,h in §2.3. We recall again
the result of Kohlhaase-Schraen.
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Proposition 3.10 ([KS12, Prop. 2.4]). The image c-IndGI Ah → IndGBχ is surjective for h ≥ 1
large enough.

Proposition 3.11. The map ΦW♮,r
above is surjective if χ has integral and antidominant (with

respect to b) weights.

Proof. Combine Proposition 3.10 and Lemma 3.12 below. The proof of Lemma 3.12 will use
Proposition 4.11. □

Lemma 3.12. The image of ΦW♮,r
contains Ah ⊂ IndGBχ(BI) the space of all h-analytic func-

tions on Cla(I ∩N,E) for any h ≥ 1.

Proof. The image ofW♮,r = (Dr(I, E)⊗D(g,B∩I)M(λ)∨) under the map iW♮,r
contains the image

of Ur(g) ⊗U(g) M(λ)∨, especially the space M(λ)∨ = Cpol(I ∩ N,E) ⊂ (IndGBχ)(BI) of Qp-

polynomial functions on I ∩N .
For h ≥ 0, we write Can(N−h, E)1I∩N for the space of functions on I ∩N that are restrictions

of rigid analytic functions on N−h i.e., power series∑
i∈NdimQp

N

ai
∏

α∈Φ−,j=1,··· ,|L:Qp|

X
iα,j

α,j , ai ∈ E

that satisfy certain convergent condition whereXα,j are coordinates of the root group ResL/Qp
Gm

corresponding to the negative roots α ∈ Φ−. This is a Banach space.

Lemma 3.13. The image of Ur(g)⊗U(g)M(λ)∨ under the map iW♮,r
contains Can(N−h, E)1I∩N

for some large enough h.

Proof of Lemma 3.13. This is a reformulation of Proposition 4.11, which is proved for L-Lie
algebras and L-analytic functions. We explain how to strengthen the result for Qp-Lie alge-
bras. Write g =

∏
σ∈Hom(L,Qp)

gσ. As in [Bre16, App. 9], there exists a factorization U(g) =

⊗σU(gσ)→ ⊗̂σUr′(gσ) ↪→ Ur(g). Similar thing happens for Can(N−h, E) and ⊗̂σCσ−an(N−h′ , E)
where σ-an means σ-rigid analytic functions: consider OL ⊂ Sp(L⟨T ⟩), the rigid unit ball.
By definition CL−an(OL, E) = E⟨T ⟩ while Can(OL, E) = O(ResL/Qp

(Sp(L⟨T ⟩)) ⊗Qp E) =

O(
∏

σ Sp(E⟨T ⟩)) = ⊗̂σE⟨T ⟩, see [Eme17, §2.3]. The decomposition of the space of analytic
functions into those of σ-analytic functions is compatible with the actions of σ-Lie algebras.
The result follows. □

We now prove that the image of ΦW♮,r
contains Ah0 for any fixed large enough h0 ≥ 1. Take

t ∈ T−−, i.e., take t such that for any n ∈ N , lim−→k→∞ tknt−k = 0. The action of tk ∈ T

on IndGBχ, f(−) 7→ f(−tk) = χ(t)kf(t−k − tk) induces an isomorphism Can(N−h, E)1I∩N ≃
Can(tkN−ht

−k, E)1tk(I∩N)t−k . Hence the image of ΦW♮,r
contains Can(tkN−ht

−k, E)1tk(I∩N)t−k .

Take k large enough such that tkN−ht
−k ⊂ Nh0 . The inclusion tkN−ht

−k ⊂ Nh0 is in-
duced by an inclusion of rigid analytic subsets. Then we see the image of ΦW♮,r

contains

Can(Nh0 , E)1tk(I∩N)t−k , all rigid analytic functions on tk(I ∩ N)t−k that converge over Nh0 ⊃
tkN−ht

−k.
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For any rigid analytic function f ∈ Can(Nh0 , E) ⊂ Ah0 , write fg for the restriction of f on each

coset tk(I ∩ N)t−kg, g ∈ tk(I ∩ N)t−k\Nh0 . The translation g.fg is in Can(Nh0 , E)1tk(I∩N)t−k .

Using translations by Nh0 , we see that the image of ΦW♮,r
contains Can(Nh0 , E).

Any function in Ah0 is a linear combination of translations by elements in I ∩ N of such
functions in Can(Nh0 , E), hence is also in the image of ΦW♮,r

. □

Example 3.14. We explain the idea for Lemma 3.13 by calculating explicitly in the case L = Qp

and G = SL2. In this case g = E.⟨e, f, g⟩ is spanned by

e =

(
0 1

0

)
, f =

(
0
1 0

)
, h =

(
1
−1

)
.

We take norm | − |n on U(g) such that |e|n = |f |n = |h|n = pn. And let Û(g)n be the Banach
completion with respect to this norm.

Take x for the coordinate of N = {
(
1
x 1

)
| x ∈ Qp} and N ∩ I = {

(
1
x 1

)
| x ∈ pZp}.

Let χ be a character with weight λ ∈ Qp. ConsiderM(λ)∨ = Cpol(N,E) ≃ Cpol(N,E)1I∩N ⊂
IndGBχ. Then Cpol(I ∩N,E) is spanned linearly by xk1I∩N for k ∈ N. Lemma 3.13 reduces to

that the image of Û(g)n ⊗U(g) Cpol(I ∩N,E) contains

Can(N−h, E) = {
∑
i

aix
i | ai ∈ E, lim−→

i

|ai|phi = 0}

for some h. The element f acts on Cpol(N,E) by the derivative for x. We calculate that,

(e.xk)(

(
1
x 1

)
) = lim

t→0

1

t
xk(

(
1
x 1

)(
1 t

1

)
)

= lim
t→0

xk(

(
1

1+xt t

1 + xt

)(
1 0
x

1+xt 1

)
)

=
d

dt
|t=0χ(1 + xt)−1 xk

(1 + xt)k
= −(λ+ k)xk+1.

And similarly h.xk = (λ + 2k)xk. The U(g)-module M(λ)∨ is generated by the highest weight
(with respect to b) vector x0 and possibly xk+1 if λ = −k ∈ Z≤0. Let α = 0 if λ /∈ Z≤0 and

α = −λ+ 1 otherwise. The above formula shows that xα+i = (−1)i
∏i−1

j=0
1

λ+α+j e
i.xα for i ≥ 1.

For g =
∑

i≥1 aix
α+i ∈ Can(N−h, E), we can rewrite it as

g = (
∑
i≥1

(−1)iai
1∏i−1

j=0(λ+ α+ j)
ei).xα.

The sum u :=
∑

i≥1(−1)iai
1∏i−1

j=0(λ+α+j)
ei converges in Û(g)n if and only if lim−→i

p−niai∏i−1
j=0(λ+α+j)

= 0.

Since lim−→i
aip

−hi = 0, we find that the element g = u.xα lies in the image of Û(g)n⊗U(g)M(λ)∨

if

lim−→
i

p(h−n)i∏i−1
j=0(λ+ α+ j)

= 0.
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Such h exists if −(λ + α) is of positive type (Definition 4.8). This holds at least for all λ ∈ Z
using that |k!|p = p

− k−s(k)
p−1 ≥ p−

k
(p−1) for a positive integer k.

On the other hand, if −(λ + α) is not of positive type, we don’t know whether Proposition
3.11 is still true.

Theorem 3.15. Let M ∈ Ob
alg and χsm be a smooth character of T , then for ? ∈ {♮, ♯}, the

resolution in Proposition 3.9 induces a quasi-isomorphism

∧•Hd ⊗H c-IndGI W?,r(τ(M)∨ ⊗ χsm)→ FG
B (M,χsm)

of complexes of D(G,E)-modules.

Proof. This follows from Proposition 3.11, Proposition 3.10, Proposition 3.9 and the snake
lemma. □

Remark 3.16. One can consider W♮,n(M) := DIn−an(I, E) ⊗D(g,B∩I) M instead of W♮,r(M).

There are maps W♮,n(M) → W♮,r(M) → W♮,n′(M) for r sufficiently close to 1 and n large

enough. These maps are injections at least if M = D(g, B) ⊗D(B,E) σ for a finite-dimensional

B-representation σ and induce quasi-isomorphisms (using Proposition 2.2 and Corollary 2.3)

∧•Hd ⊗H c-IndGI W♮,n(M) ≃ ∧•Hd ⊗H c-IndGI W♮,r(M)

between n and r-versions. The quasi-isomorphisms also hold for general M in Theorem 3.15
by considering a presentation of M as in the proof of Lemma 3.3 and the right exactness of
−⊗H H/m.

3.5. Duality for complexes. We can already observe certain duality between different Koszul
resolutions in Theorem 3.15. At present, we will establish the duality only for complexes (The-
orem 3.21). The duality between locally analytic representations will be discussed later in §5.

We continue with the notation in §3.3. The continuous linear E-dual W♯,r(σ
∨)∨ of W♯,r(σ

∨)
is Dr(I, E) ⊗D(B∩I,E) σ and the dual of W♯,r(τ(M)∨) is Dr(I, E) ⊗D(g,B∩I) M . We adapt the

convention that g.f(−) = f(g−1−) for f ∈ HomE(W, E) for an I-representation W and g ∈ I.
As in Lemma 3.3, for t ∈ T−, there is a ψt−1 operator on Dr(I, E) ⊗D(g,B∩I) M extending the

action of δt on M . We obtain also Ut−1 operators on c-IndGI Dr(I, E)⊗D(g,B∩I) M , as in §2.1.

Lemma 3.17. Let t ∈ T−. The transpose ψ∨
t of ψt on W♯,r(τ(M)∨)∨ = Dr(I, E)⊗D(g,B∩I) M

coincides with ψt−1.

Proof. Let Hm be the subgroup after Definition 3.1 such that Dr(I, E) = E[I]⊗E[Hm]Ur(g). The

canonical pairing D(I, E) × Cla(I, E) → E is I-equivariant for left I-modules (the left I-action
on D(I, E) comes from the transpose of its left action on Cla(I, E) composed with the inverse
involution). The pairing refines to pairings δgD(Hm, E) × gCla(Hm, E) → E for g ∈ I/Hm

where δg ∈ E[I] is the Dirac distribution. Hence the dual of δgUr(g) can be identified with the
direct summand gCr(Hm, E) = Cr(Hmg,E) ⊂ Cr(I, E) for g ∈ I/Hm. We see for m ∈ Mr ⊂
Dr(I, E)⊗D(g,B∩I) M, g ∈ I and f ∈ W♯,r(τ(M)∨) ⊂ IndGBσ

∨(BI), we have m(f) = m(f1BHm)

and (δgm)(f) = m(g−1.f).
Hence for m ∈M ⊂ D(G,E)⊗D(g,B) M, g ∈ I,

(ψ∨
t (δgm))(f) = δgm(ψtf) = δgm((t−1.f)1BI) = m(((g−1t−1).f)1BI) = m((g−1t−1).f),
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where the last equality is calculated for g−1t−1f ∈ IndGBσ
∨. By the construction (see Lemma

2.10), ψt−1(δgm) = δtgt−1t.m for g ∈ I ∩B. Hence

(ψt−1(δgm))(f) = (δtgt−1t.m)(f) = (t.m)(tg−1t−1f) = m(g−1t−1f).

We see ψ∨
t = ψt−1 on δg.M for g ∈ I ∩B. Since M is dense in Mr,

∑
g∈I∩B δg.M is dense in

Dr(I, E)⊗D(g,B∩I) M and both operators are continuous, the result follows. □

We discuss some generality of Hecke operators. Let W∨ be the (continuous) dual of an I-
representation W (with the open compact topology). Suppose that there are ψt-actions on W
which induce Ut-actions on c-IndGI W. For t ∈ T−, let U∨

t be the transpose of Ut acting on
c-IndGI W∨ under the following G-invariant pairing

(3.2) c-IndGI W∨ × c-IndGI W → E : (
∑

g∈G/I

[g, fg],
∑

g∈G/I

[g′, wg′ ]) 7→
∑

g∈G/I

fg(wg),

such that (x, Uty) = (U∨
t x, y) (see Lemma 3.18 or Lemma 3.19 below for the existence of the

transpose). Let ψt−1 := ψ∨
t be the transpose of ψt on W∨ so that ψt−1(x.f) = (txt−1)ψt−1f for

x ∈ I ∩ t−1It. This allows us to define the corresponding Hecke operator Ut−1 on c-IndGI W∨.

Lemma 3.18. The transpose U∨
t of Ut is equal to Ut−1.

Proof. We calculate that for f ∈ W∨, g ∈ G and w ∈ W,

U∨
t ([1, f ])([g, w]) = [1, f ](

∑
x∈I/(I∩tIt−1)

[gxt, ψt(x
−1w)])

=
∑

x∈I/(I∩tIt−1)∩g−1It−1

f((gxt)ψt(x
−1w))

The intersection I∩g−1It−1 ̸= ∅ if and only if g ∈ It−1I. And for g = x′t−1 where x′ ∈ I and x ∈
I, gxt = x′t−1xt is in I if and only x ∈ I ∩ tIt−1. Thus U∨

t ([1, f ]) =
∑

x′∈I/(I∩t−1It)[x
′t−1, (w 7→

f(x′ψt(w)))] =
∑

x′∈I/(I∩t−1It)[x
′t−1, ψt−1(x′−1.f)] = Ut−1([1, f ]). □

We consider the left and right G-actions on the space Clac (G,E) of compactly supported locally
analytic functions on G given by right and left translations: (lgrhf)(−) = f(g−h). For a locally
analytic representation π, we write

D0
BZ(π) := HomG(π, Clac (G,E))−HomG(E,HomE(π, Clac (G,E)))

where G acts on f ∈ HomE(π, Clac (G,E)) by g.f(−) = rh(f(g
−1−)) and we take the continuous

Hom’s. This is a right D(G,E)-module induced by the left translation on the target Clac (G,E)
and we make it into a left D(G,E)-module using the involution g 7→ g−1 of G, or consider the
left action of G on Clac (G,E) by g.f = f(g−1−). We will ignore the topology of D0

BZ(π) in this
section (we refer to Theorem 5.3 for the discussion on “topology”).

Lemma 3.19. Let W be a locally analytic D(I, E)-module over a Smith/Banach space (so that
W∨ is a Banach/Smith space).

(1) We have D0
BZ(c-Ind

G
I W) = c-IndGI W∨. And under this identification, [g, f ]([h,w]) =

(g′ ∈ gIh−1 7→ f(g−1g′hw)) ∈ Cla(gIh−1, E) ⊂ Clac (G,E).
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(2) If U : c-IndGI W → c-IndGI W is a G-equivariant map, then D0
BZ(U) : c-IndGI W∨ →

c-IndGI W∨ under the identification in (1) is the transpose of U under the pairing (3.2).

Proof. (1) HomG(c-Ind
G
I W, Clac (G,E)) = HomI(W, Cla(I, E) ⊗E[I] E[G]). Since W is a Banach

or Smith over E and Clac (G,E) = ⊕g∈G/I lgCla(I, E), we have ([Sch13b, Cor. 8.9] or [RJRC22,
Lem. 3.32])

HomE(W, Cla(I, E)) = ⊕g∈G/IHomE(W, Cla(g−1I, E)).

Taking I-invariants

HomI(W, Cla(I, E)⊗E[I] E[G]) = HomI(W, Cla(I, E))⊗E[I] E[G].

Using [RJRC22, Thm. 3.40], there is an I-isomorphism

HomI(W, Cla(I, E)) = HomD(I,E)(D(I, E),W∨) =W∨

which sends f ∈ W∨ to w ∈ W 7→ (g 7→ f(gw)). Finally, for f ∈ W∨, we see [g, f ]([h,w]) =
rh.([g, f ]([1, w])) = rh.(lg−1 .(g′ 7→ f(g′w))) = (g′ 7→ f(g−1g′hw)).

(2) By definition, for f ∈ c-IndGI W∨, w ∈ c-IndGI W, f(w) ∈ Clac (G,E), we have (g.f)(w) =
lg−1f(w), f(g.w) = rgf(w). Hence the pairing below

c-IndGI W∨ × c-IndGI W → Clac (G,E)→ E, (f, w) 7→ ⟨f, w⟩ := (f(w))(1).

is equivariant for the left actions on c-IndGI W∨ and c-IndGI W and the trivial action on E. Using
that [g, f ]([h,w])(1) is not zero only if h ∈ gI, we can check that the pairing ⟨−,−⟩ coincides
with (3.2).

On the other hand, the operator D0
BZ(U) is characterized by for g ∈ G, f ∈ c-IndGI W∨, w ∈

c-IndGI W,

(D0
BZ(U).f)(w)(g) = f(U.w)(g),

and by the G-equivariances of U and D0
BZ(U), characterized by the equality

⟨D0
BZ(U).f, w⟩ = ⟨f, U.w⟩

for all f, w. Hence D0
BZ(U) is the transpose of U . □

We return to Koszul complexes. Let m ⊂ H act on c-IndGI W for W = W?(M) taken as in
Proposition 3.9. Apply the functor D0

BZ for the Koszul complex ∧•Hd ⊗H c-IndGI W, the “dual”

D0
BZ(∧•Hd ⊗H c-IndGI W) is then a complex of G-modules in cohomological degrees [0, d].

Lemma 3.20. The complex D0
BZ(∧•Hd ⊗H c-IndGI W) is equal to the Koszul complex

∧•Hd ⊗H c-IndGI W∨[−d]

where H acts on c-IndGI W∨ by the transpose of its action on c-IndGI W and [−d] denotes the
cohomological degree shift.

Proof. Suppose that H is a commutative ring, A is a ring, M is an (A,H)-bimodule with
commutative actions, and let N be an A-module. Let φ : Hm → Hn be an H-linear map
inducing φM : Hm ⊗H M → Hn ⊗H M . For a perfect H-module P , we have functori-
ally HomA(P ⊗H M,N) = HomH(P,HomA(M,N)) and RHomH(P,HomA(M,N)) = P∨ ⊗L

H
HomA(M,N), where P∨ := RHomH(P,H) [Sta24, Tag 08JJ]. Take P = Hm,Hn, we see

https://stacks.math.columbia.edu/tag/08JJ
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HomA(−, N)(φM ) : HomA(Hn ⊗H M,N) → HomA(Hm ⊗H M,N) can be identified with the
tensoring over H of the transpose φ∨ : (Hn)∨ → (Hm)∨ with HomA(M,N).

Apply the same reasoning for connecting maps of ∧•Hd ⊗H c-IndGI W, we see the “dual”
D0
BZ(∧•Hd ⊗H c-IndGI W) is calculated by HomH(∧•Hd,H) ⊗H c-IndGI W∨ where H acts on

c-IndGI W∨ by the transpose in Lemma 3.19. We get the desired identification using that
HomH(∧•Hd,H) = ∧•Hd[−d] by the autoduality of the exterior algebras, cf. [Ser97, §A.2,
Ch. IV]. □

We can now prove our main theorem on the duality.

Theorem 3.21. Let M ∈ Ob
alg and χsm be a smooth character of T . Consider the resolution

c-IndGI W♯,r(τ(M)∨⊗Eχsm) of FG
B (M,χsm) in Theorem 3.15. Then there is a quasi-isomorphism

D0
BZ(∧•Hd ⊗H c-IndGI W♯,r(τ(M)∨ ⊗E χsm)) ≃ FG

B
(HomE(M,E)n

∞
,DBZ(χsm))

of complexes of E[G]-modules.

Proof. By Lemma 3.20, the dual complex is ∧•Hd ⊗H c-IndGI W♯,r(τ(M)∨ ⊗ χsm)
∨[−d] for the

action of Ut−1 operators. By Lemma 3.17 and that W♯,r(τ(M)∨ ⊗ χsm)
∨ = Dr(I, E) ⊗D(g,I∩B)

(M ⊗χ−1
sm), the transpose Ut−1 comes from the t-actions or ψt−1-actions on M ⊗χ−1

sm in the way
of Lemma 3.3.

Let I ′ = I ∩ I where I is the opposite Iwahori. By Proposition 2.13,

(3.3) ∧•Hd ⊗H c-IndGI W♯,r(τ(M)∨ ⊗ χsm)
∨ ≃ ∧•Hd ⊗H c-IndGI′W♯,r(τ(M)∨ ⊗ χsm)

∨|I′ .

While Dr(I, E)⊗D(g,B∩I) (M ⊗ χ−1
sm)|I′ = Dr(I

′, E)⊗D(g,I′∩B) (M ⊗ χ−1
sm) and

c-IndII′Dr(I
′, E)⊗D(g,I′∩B) (M ⊗ χ−1

sm) = Dr(I, E)⊗D(g,I∩B) (M ⊗ χ
−1
sm) =:W♮,r(M ⊗ χ−1

sm).

Hence by (2) of Proposition 2.11,

(3.4) ∧•Hd ⊗H c-IndGI′W♯,r(τ(M)∨ ⊗ χsm)
∨|I′ ≃ ∧•Hd ⊗H c-IndG

I
W♮,r(M ⊗ χ−1

sm).

Combining (3.3), (3.4) and Theorem 3.15, we have

∧•Hd ⊗H c-IndGI W♯,r(τ(M)∨ ⊗ χsm)
∨ ≃ ∧•Hd ⊗H c-IndG

I
W♮,r(M ⊗ χ−1

sm) ≃ FG
B
(τ(M)∨, χ−1

sm).

Check the degree shift and we get the desired quasi-isomorphism. □

4. Localization and completion

This section aims to prove Proposition 4.11 (used for Proposition 3.11) using the Beilinson-
Bernstein localization of Ardakov-Wadsley [AW13].

4.1. The localization functor. We recall the settings and results in [AW13]. We change
the notations from previous chapters. Let G be a connected split reductive group over OL. We
assume that G is semisimple and simply-connected. Fix a Borel subalgebra B and the unipotent
radical N and the opposite groups B,N. Write X = G/B for the flag variety over OL. Let
G = G(L), B = B(L) as before. Let g, b, etc. be the Lie algebras over OL.

There is the moment map

β : T̃ ∗X = G×B (g/b)∗ → g∗,
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inducing a homomorphism U(g) → D̃ as filtered OL-algebras. Here H = B/N, D̃ = (ξ∗DX̃
)H

for ξ : X̃ := G/N → G/B and D
X̃

denotes the sheaf of differential operators on X̃. The

sheaf of algebras D̃ ≃ D ⊗ U(h) is equipped with a natural increasing filtration FmD̃,m ≥ 0

(induced by order of differential operators) as in [AW13, §4.6] such that gr(D̃) ≃ SymOX
T̃ for

the enhanced tangent sheaf T̃ = (ξ∗TX̃)H. The fiber of D̃ at the point B ∈ X with respect to
the left OX-action is equal to U(g)/nU(g).

Identify H = B/N = T, the maps U(g) → D̃ and U(t) → D̃ coincide on the center Z(g) =
U(g)G of U(g) via the Harish-Chandra morphism Z(g) → U(t)W,· ([AW13, §4.10]). And U(g)
is also equipped with the Poincaré-Birkhoff-Witt filtration so that gr(U(g)) = SymOL

g.
There is a set of collections SX of affine Zariski opens of X that trivialise ξ as in [AW13, §4.3].
The n-th deformation D̃n is defined to be the subalgebra

∑
iϖ

in
L FiD̃ whose ϖL-adic com-

pletion is denoted by
̂̃Dn [AW13, Def. 5.9] with

̂̃Dn,L :=
̂̃Dn ⊗OL

L which are sheaves for the

Zariski topology on X. Note that
̂̃Dn := lim←−a

D̃n/ϖ
aD̃n is supported on the special fiber of X.

Similarly we define U(g)n = U(ϖn
Lg) and Û(g)n,L. The limit Û(gL) = lim←−n∈N Û(g)n,L is the

Arens-Michael envelope of gL.
Fix an OL-linear map λ : ϖn

Lh → OL which induces a character λ : U(h)n := U(ϖnh) →
OL. The sheaf of deformed twisted differential operators is defined by ([AW13, Def. 6.4])

Dλ
n := D̃n ⊗U(h)n λ with the ϖL-adic completion D̂λ

n and D̂λ
n,L := D̂λ

n ⊗OL
L. Let Ûλ

n , Ûλ
n,L

be corresponding completions for Uλ
n := U(g)n ⊗(U(g)G)n λ as in [AW13, §6.10]. And we write

D̂n,L, Ûn,L, etc. for D̂λ
n,L, Ûλ

n,L, etc. if λ = 0. Then [AW13, Thm. 6.10] says that the map

Ûλ
n,L → D̂λ

n,L induces an isomorphism

Ûλ
n,L ≃ Γ(X, D̂λ

n,L).

Let Locλ : Mod(Ûλ
n,L)→ Mod(D̂λ

n,L) be the localization functor

M 7→ D̂λ
n,L ⊗Ûλ

n,L

M.

Let ρ be the half sum of all positive roots.

Theorem 4.1 ([AW13, Thm. 6.12]). Let λ ∈ HomOL
(ϖn

Lh,OL).

(1) If λ + ρ is dominant (⟨λ + ρ, α∨⟩ /∈ {−1,−2, · · · } for any positive (with respect to b)
coroot α∨ of H, [AW13, §6.7]) and regular (i.e., the stabilizer of λ+ ρ under the action
of the Weyl group is trivial), then the functor Locλ and the functor Γ(X,−) of taking

global sections induce an equivalence of the categories of coherent modules over Ûλ
n,L and

D̂λ
n,L.

(2) If λ+ ρ is dominant but not regular, then Locλ and Γ(X,−) still induce an equivalence

between coherent Ûλ
n,L-modules and the quotient of the category of coherent D̂λ

n,L-modules
by the full subcategory of modules that are in the kernel of Γ.
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Remark 4.2. In [AW13], the prime number p needs to be very good for G [AW13, §6.8]. This
assumption is removed in [Ard21, §5.3]

Let M be a coherent U(gL)-module with infinitesimal character given by λ. The localization
M := Dλ

n,L ⊗Uλ
n,L

M is a coherent module of Dλ
L = Dλ

n,L and Γ(X,M) = M (this is essentially

the classical localization). Let M̂n,L = Ûλ
n,L ⊗Uλ

n,L
M and M̂n,L := Locλ(M̂n,L).

Lemma 4.3. For V ∈ SX,

M̂n,L(V) = D̂λ
n,L(V)⊗Dλ

n,L(V)M(V).

Proof. Since SX is coherently acyclic (even affine) for the sheaves of rings
̂̃Dn,L and D̃n,L in the

sense of [AW13, Def. 5.1] by [AW13, Cor. 5.9, Thm. 5.13], so is for their quotients Dλ
n,L, D̂λ

n,L

([AW13, Lem. 6.11]) by the same proof. For any V ∈ SX, we getM(V) = Dλ
n,L(V)⊗Uλ

n,L
M and

M̂n,L(V) = D̂λ
n,L(V) ⊗

Ûλ
n,L

M̂n,L (writing a finite presentation of M using free Uλ
n,L-modules).

The result follows. □

Moreover D̂λ
n,L(V) = D̂λ

n(V)⊗OL
L by [AW13, Prop. 6.5]. Hence M̂n,L(V) is the completion

of the coherent moduleM(V) over Dλ
n,L(V) with respect to the p-adic topology induced from

the lattice Dλ
n(V) ⊂ Dλ

n,L(V).

4.2. Dual Verma modules for dominant weights. We consider the localization of dual
Verma modules with dominant weights.

Suppose that λ is integral (for the group H) and λ + ρ is dominant with respect to b
(equivalently, w0(λ) − ρ = w0(λ + ρ) is dominant with respect to b, where w0 is the longest
element in the Weyl group). Take M = M(w0(λ))

∨ the BGG dual of the Verma module

M(w0(λ)) = U(gL) ⊗U(b) w0(λ) in the category ObL of the dominant (for b) highest weight

w0(λ). Consider the Bruhat cells X◦
w = BwB/B ⊂ X. The inclusion jw0 : X◦

w0
↪→ X is an open

embedding.

Lemma 4.4. There is an isomorphism of U(gL)-modules,

M(w0(λ))
∨ ≃ Γ(X, ((jw0,∗OXw0

)⊗OX
O(λ))⊗OL

L).

Here jw0,∗ is the usual direct image functor for OX-modules and O(λ) is the line bundle G×B λ

over X consisting of functions f on G such that f(gb) = λ−1(b)f(g) for b ∈ B. And,

Mn,L ≃ ((jw0,∗OXw0
)⊗OX

O(λ))⊗OL
L

as Dλ
n,L-modules under the equivalences in Theorem 4.1.

Proof. This is [BG99, Prop. 4.4]. We give some explanation. The sheaf (jw0,∗OXw0
) ⊗OL

L

is a DL = Dn,L-module for the trivial character 0 and the translation (jw0,∗OXw0
)L ⊗OX

O(λ)
becomes a Dλ

L-module via the identification Dλ
L ≃ O(λ) ⊗ DL ⊗ O(λ)−1. The action of D̃ =

(ξ∗DG/N)H on O(λ) ⊂ (ξ∗OG/N)H=λ factors through the quotient D̃λ
0 since U(h) ⊂ D̃ in

[AW13, Prop. 4.6] acts via the character λ, see [Kas88, §6]. If λ = 0,M(w0(0))
∨ =M(ww0·0)∨
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for w = w0 (here w·λ = w(λ − ρ) + ρ), the result is [BK81, Cor. 5.8], or Lemma 4.6 below. In
general, if λ is dominant for b, Γ(X,O(λ)) has B-highest weight λ, B-highest weight w0(λ), see
[Jan03, Prop. II.2.2]. The global section of the geometric translation Loc0(M(0))⊗O(λ) when
λ+ ρ is b-dominant is the translation T

w0·w0(λ)
w0·0 M(0)∨ =M(w0(λ))

∨ by [Hum08, Thm. 7.6] and

the proof of [BG99, Prop. 2.8]. □

Taking global sections, the U(gL)-module M(w0(λ))
∨ = Γ(X,Mn,L) = OX(Xw0)(λ)L can be

identified with O(NL) after trivializing the line bundle O(λ)L over X◦
w0

= Nw0B/B. Let Φ−

be the set of roots of N . We fix a decomposition N ≃
∏

α∈Φ− Ga into root subgroups with

coordinates Xα, α ∈ Φ− so that N ≃ Spec(OE [Xα, α ∈ Φ−]).

Lemma 4.5. Fix a trivialization of O(λ) on X◦
w0
. The section M̂n,L(X

◦
w0
) is equal to the Tate

algebra E⟨Xα, α ∈ Φ−⟩.

Proof. Without the completion, Mn,L(X
◦
w0
) is equal to the space Cpol(N,L) = O(NL). By

Lemma 4.3, M̂n,L(X
◦
w0
) is the completion of Cpol(N,L) for the p-adic topology on Dλ

n,L(Xw0) ≃
Dn,L(N) = L[Xα, ∂α, α ∈ Φ−] [AW13, Lem. 6.4] is the Weyl algebra by the pinning N ≃ A|Φ−|.

By definition [AW13, §3.5, §5.7] and by [AW13, Prop. 5.7], D̂n,L(N) is the completion of Dn,L(N)
for the p-adic norm

|
∑

i=(iα),j=(jα)∈NΦ−

λi,j
∏
α

Xiα
α

∏
α

∂jαα | = sup
i,j
|λi,j ||ϖL|

−n
∑

α jα
p .

SinceMn,L(N) ≃ Dn,L(N)/(∂α, α ∈ Φ−) as left Dn,L(N)-modules (up to a twist), we conclude
that

M̂n,L(N) ≃ D̂n,L(N)/(∂α, α ∈ Φ−) = E⟨Xα, α ∈ Φ−⟩
is the Tate algebra □

On the other hand, let χλ : T → L× be an L-analytic character with the weight λ. Consider
the locally analytic principal series

IndG
B
χλ = {f : G→ L locally analytic | f(gb) = χ−1

λ (b)f(g),∀b ∈ B}

with the usual left action of G given by g.f(−) = f(g−1−). Fix an isomorphism N ≃ NB/B.
Consider the subspace Cpol(N,L) = O(N)L of polynomial functions on N , which is equal to the
dual Verma module M(λ)∨ = (U(gL)⊗U(bL) λ)

∨ in ObL as in Remark 3.4. Via the isomorphism

Cpol(NB/B,L) ≃ Cpol(Nw0B/B,L) : f(−) 7→ f(w0−),

we see again that the U(gL)-module Cpol(Nw0B/B,L) is isomorphic to M(w0(λ))
∨ the twist by

w0 of M(λ)∨.

Lemma 4.6. The two U(gL)-module structures on Cpol(N,L) ≃M(w0(λ))
∨ (via Cpol(N,L)w0 ⊂

IndG
B
χλ and Cpol(N,L) ≃ Γ(X,Mn,L)) coincide.

Proof. The U(g)-module structures on OXw0
(λ) both come from the infinitesimal action of

G = G(L) on O(Nw0B)B=λ given by (x.f)(g) = d
dtf(exp(−tx)g) for g ∈ G, x ∈ g and f regular

near a neighborhood of g. □
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4.3. Completion near the boundary. We will prove Proposition 4.11 by studying the com-

pletion M̂n,L of the coadmissible Dλ
n,L-moduleMn,L in Lemma 4.4.

We take a finite covering

S = {Vw := wNw0B/B,w ∈W}

of the flag variety X whereW denotes the Weyl group of G. Let ∂X = X−X◦
w0

be the boundary
(Weil or Cartier) divisor which is also the union ∪sXw0s of codimension one Schubert varieties
where s runs over all simple reflections [BB05, Prop. 2.3.2]. For all V ∈ S, let fV ∈ O(VL)
be an element cutting out the boundary VL ∩ ∂XL (note that the Picard group of VL is trivial
[Sta24, Tag 0BDA]).

Take one V ∈ S. Let A = O(VL) = L[Y1, · · · , Yl] where l = |Φ−|, Â = L⟨Y1, · · · , Yd⟩,
D := Dn,L(V) = A[ϖn

L∂1, · · · , ϖn
L∂l] and D̂n,L = D̂n,L(V). Write | · |

Â
for the norm

|
∑

i=(i1,··· ,il)∈Zl

λi

l∏
j=1

Y
ij
j |Â = sup

i
|λi|p

and f = fV ∈ A.
The reason that A[ 1f ] is a finitely generated D-module lies in the theory of b-functions

([MNM91, Cor. 3.1.2]).

Theorem 4.7 ([MNM91, Thm. 3.1.1]). For any u ∈ A, there exist non-zero polynomials
b(s) ∈ L[s] and P (s) ∈ D[s] such that

b(s)f−s−1u = P (s)f−su

after specializing s ∈ Z.

The behavior of the D-module A[ 1f ] under completion is studied in [BB21]. We adapt the

arguments in [BB21] to our case. We recall the following definition.

Definition 4.8 ([BB21, Def. 3.1]). Let λ ∈ Qp. We say that λ is of positive type if λ ∈ Z≥0

or there exists M > 0 such that lim−→i→∞
piM∏i−1

j=0(λ−j)
= 0, equivalently ([BB21, Lem. B.2]) the

type of λ which is, by [Ked22, Def. 13.1.1], the radius of convergence of the formal power series∑
i≥0,i ̸=λ

xi

λ−i , is positive.

Remark 4.9. Recall that a number λ ∈ Qp is p-adic non-Liouville if ±λ have type 1 [Ked22,
Def. 13.1.2].

Lemma 4.10. Let u be an element in A such that the coefficients of the polynomial b(s) in
Theorem 4.7 are in Q[s]. Then there exists M > 0 such that the series

∑
i≥0 aip

Mi 1
f iu for

ai ∈ Â converges in D̂n,L ⊗D (A[ 1f ]) provided that limi→∞ |ai|Â = 0.

Proof. Let s0 ≥ 0 such that b(s) has no zero in Z≥s0 , we get

f−su =
P (s− 1) · · ·P (s0)
b(s− 1) · · · b(s0)

f−s0u

for s > s0.

https://stacks.math.columbia.edu/tag/0BDA
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By the assumption, all the roots of b(s) are of positive type by [DGS16, Prop. VI.1.1]. By

[BB21, Lem. 4.1], there exists an integer M such that for all i ≥ 0, pMi P (i−1)···P (s0)∏i−1
s=s0

b(s)
lies in the

unit ball of D̂n,L: the p-adic completion of OL[Y1, · · · , Yl, ϖn
L∂1, · · · , ϖn

L∂l]. We take one such
M .

Let g =
∑

i≥0 aip
Mi 1

f iu ∈ Â⟨p
M

f ⟩ for ai ∈ Â with limi |ai|Â = 0. Then g can also be

written as
∑

i≥s0
aip

Mi P (i−1)···P (s0)∏i−1
s=s0

b(s)
f−s0u up to finitely many terms. Since lim−→i→∞ ai = 0 and

pMi P (i−1)···P (s0)∏i−1
s=s0

b(s)
are bounded, the element

∑
i≥s0

aip
Mi P (i−1)···P (s0)∏i−1

s=s0
b(s)

converges in D̂n,L. Hence

the series g =
∑

i≥0 aip
Mi 1

f iu converges in D̂n,L ⊗D A[
1
f ]. □

Proposition 4.11. Take M =M(w0(λ))
∨ for λ+ρ dominant with respect to b and integral for

H. Let M̂n,L = Locλ(M̂n,L). Then the restriction map M̂n,L(X) = Ûλ
n,L ⊗Uλ

n,L
M(w0(λ))

∨ →

M̂n,L(X
◦
w0
) contains (in the notation of Lemma 4.5)

O(Nan
(≤ pM )) := {

∑
i=(iα)α∈NΦ−

λip
M(

∑
α iα)

∏
α

Xiα
α | λi ∈ L, lim−→

|i|→∞
|λi|p = 0}

for some M ≥ 0.

Proof. By Lemma 4.4, the localization of M(w0(λ))
∨ is the pushforward of OX(λ)|X◦

w0
. Hence

for V ∈ S, Mn,L(V) = OX(λ)(V − ∂X) ⊗OL
L = OXL

(VL)[
1
fV

](λ). Here OXL
(VL)[

1
fV

](λ)

denotes the twist by OXL
(λ) for the action of Dλ

n,L. Denote also by Xα ∈Mn,L(X
◦
w0
) the image

of the coordinates of N ≃ Nw0B/B in OX(VL)[
1
fV

] = OX(X◦
w0
∩V)[1p ].

We fix a trivialization of ιX◦
w0

: Mn,L|X◦
w0

= OX(λ)|X◦
w0
[1p ] ≃ OX|X◦

w0
[1p ]. Since M̂n,L is a

sheaf, to prove the proposition, we only need take M such that the sequences∑
i

λip
M |i|Xi :=

∑
i∈NΦ−

λip
M(

∑
α iα)

∏
α

Xiα
α

converge in the completions M̂n,L(V) = D̂λ
n,L(V)⊗Dλ

n,L(V) (OXL
(VL)[

1
fV

](λ)) (Lemma 4.3) for

all V ∈ S provided that lim−→i
λi = 0.

There are only finitely many V ∈ S, thus we can focus on one V. On V the line bundle

O(λ) can be trivialized and there are isomorphisms D̂λ
n,L(V) ≃ D̂n,L(V) [AW13, Prop. 6.5].

Under this isomorphism, we can identifyMn,L(V) with the Dn,L(V)-module OXL
(VL)[

1
fV

] via

ιV : OX(λ)|V[1p ] ≃ OX|V[1p ], i.e., we can assume λ = 0 if we focus on the completion over V.

Write f = fV.
The trivializations ιX◦

w0
and ιV of OX(λ)|X◦

w0
and OX(λ)|V may not be compatible over

V∩X◦
w0
. The composite ιV ◦ ι−1

X◦
w0
|V∩X◦

w0
: OX(V− ∂X)[1p ] ≃ OX(V− ∂X)[1p ] = OX(VL)[

1
f ] is

OX(V−∂X)-linear and is determined by an element ιV◦ι−1
X◦

w0
|V∩X◦

w0
(1) = u

fnu in OX(X◦
w0
∩V )×

for some u ∈ OX(V), nu ∈ Z. Nevertheless, we can always write in Mn,L(VL)[
1
f ] that Xα =

gα
fnα

u
fnu for α ∈ Φ− and for some gα ∈ A := OXL

(VL) and nα ≥ 0 under the trivialization ιV.

Then Xi
α = ( gα

fnα )
i u
fnu in A[ 1f ].
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The split reductive group G with B ⊂ G, as well as the inclusion V ⊂ G/B and the line
bundle OX(λ) for λ integral, can be defined over Q. Hence we can take u such that b(s) ∈ Q[s]
satisfying Theorem 4.7 for our A, u, f .

Take M0 such that |gα|Â < pM0 for all α. Let M1 ≥ 0 such that Lemma 4.10 holds for
f = fV,M =M1 and u. Then the series∑
i∈NΦ−

λip
M |i|Xi =

∑
i∈NΦ−

λip
M |i|

∏
α g

iα
α

fnu+
∑

α iαnα
u =

1

fnu

∑
j≥0

(
∑

∑
α iαnα=j

λip
M |i|−M1j

∏
α

giαα )
pM1j

f j
u

converges in D̂n,L(V) ⊗Dn,L(V) A[
1
f ] if lim−→i

λi = 0 and M > M0 +M1(
∑

α(1 + nα)) by Lemma

4.10. □

5. Duality of patching modules

Using solid formalism of locally analytic representations in [RJRC22, RJRC23], we will define
the Bernstein-Zelevinsky duality functor DBZ(−) (Definition 5.4) and then discuss coherent
sheaves arising from the patching functors (Definition 5.9).

Our notations follow largely [RJRC23]. We consider the p-adic local field E as a solid con-
densed ring. A solid E-space is roughly the condensed version of a complete locally convex
topological E-space. Write ModE■

for the (∞-)derived category of solid E-modules, associated

to the analytic ring E■ := (E,OE)■, and write Mod♡E■
for its heart with respect to the natural

t-structure.
If D is an associative solid E-algebra (we will only consider non-derived/static condensed

rings), we write ModE■
(D) for the stable ∞-category of left D-modules on E■-spaces. Let G

be a split reductive p-adic Lie group as before. We will take for example D = E■[G] the solid
Iwasawa algebra or D(G,E) the locally analytic distribution algebra [RJRC23, §2.1]. Note that
if D = E■[G] or D(G,E), there is a canonical involution of D induced by the inverse map of G
which induces an equivalence of the categories of left and right D-modules, denoted by ι. We
write ι(−)⊗L

D,■−, or −⊗L
D,■−, for the relative tensor product (see [Lur07, §4.5]) of ModE■

(D),
an analog of complete tensor products. There are condensed non-derived or derived Hom’s for
D-modules HomD(−,−), RHomD(−,−) ∈ ModE■

. If M,N ∈ ModE■
(D) and S is a profinite

set, then RHomD(M,N)(S) = RHomE(E[S], RHomD(M,N)) = RHomD(E[S]⊗L
E M,N).

We will focus on the category ModE■
(D(G,E)) of solid D(G,E)-modules. There is a full

subcategory ReplaE■
(G) of (derived) solid locally analytic representations of G, which is the

derived category of its heart Repla,♡E■
(G) [RJRC23, Prop. 3.2.6].

5.1. Cohomological duality. Let I ⊂ G be the Iwahori subgroup as in §3. Suppose that
W ∈ ModE■

(D(I, E)), we define the compact induction

c-IndGI W := E■[G]⊗L
E■[I]W = D(G,E)⊗L

D(I,E)W.

If W ∈ Mod♡E■
(D(I, E)), then c-IndGI W = D(G,E) ⊗D(I,E) W is in Mod♡E■

(D(G,E)) (since

D(G,E) is free over D(I, E) and Mod♡E■
is stable under direct sums which are exact).

Remark 5.1. If W = W(∗) (in the notation of [SC19, Prop. 1.7]) arises as a classical LS

space of compact type, then (c-IndGI W)(∗) = HomE(E, c-Ind
G
I W) = c-IndGI W(∗) since E is

compact in ModE■
. One may equip (c-IndGI W)(∗) with certain topology as in loc. cit. However,
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this topology may not coincide with the locally convex direct sum topology on c-IndGI W(∗). If
V = lim−→i

Vi is a locally convex inductive limit of Banach spaces with compact injective transition

maps, then V = lim−→i
Vi [CGN23, Lem. 2.19], which is not true in general.

Suppose that W = W(∗) for W(∗) = W?(τ(M)∨ ⊗ χsm) with c-IndGI W(∗) → π(∗) =

FG
B (M,χsm) as in Theorem 3.15 (notation in §3.3) where π = FG

B (M,χsm). Then W(∗) is a

classical D(I, E)-module whose underlying topological space is a Fréchet space or a Smith space
with elements in H acting continuously on c-IndGI W(∗). If W is a Banach space, c-IndGI W(∗)
with the locally convex inductive limit topology is an LF space. The augmented complex

∧•Hd ⊗H c-IndGI W(∗)→ π(∗)
is an exact complex of LF-spaces where all morphisms are strict by the open mapping theorem
[Eme17, Thm. 1.1.17].

Proposition 5.2. Let W, π be as above, then the map W → π induces an acyclic augmented
complex

∧•Hd ⊗H c-IndGI W → π

in ModE■
(D(G,E)).

Proof. The map W(∗) → π(∗) induces W → π in ModE■
(D(G,E)) and ψt : W(∗) → W(∗)

induces ψt : W → W via the fully faithful embedding of [SC19, Prop. 1.7] (note that Fréchet
and Smith spaces are compactly generated). The general construction in §2.1 applies formally
to give the desired complex. We remain to show the complex is exact.

We show that ∧•Hd ⊗H c-IndGI W ≃ c-IndGI W ⊗H H/m. We check that for any extremally
disconnected set S, the complex ∧•Hd ⊗H (c-IndGI W)(S) concentrates in degree 0. While
(c-IndGI W)(S) = HomE(E■[S], c-Ind

G
I W) = c-IndGI HomE(E■[S],W) since E■[S] is compact.

Hence the complex of S-points concentrates in degree 0 by Proposition 2.2 replacing W by
HomE(E■[S],W).

We assume first that W is a (condensed) Banach space so that c-IndGI W is an LF space.
We prove the surjectivity of c-IndGI W → π. We write K for the kernel of c-IndGI W → π,

and write c-IndGI W = lim−→n
Fn where Fn are Fréchet spaces and Kn = Fn ∩ K, the kernel of

Fn → π. Since π is LF (π is LS of compact type [RJRC22, Cor. 3.38]), the map Fn → π
factors through some Fréchet subspace of π [RJRC22, Lem. 3.32]. By the fully faithfulness
of [RJRC22, Prop. 3.7], the map Fn → π in HomE(Fn, π) arises from some Fn(∗) → π(∗).
The kernel is a Fréchet space denoted by Kn(∗) closed in Fn(∗). We let πn = Fn/Kn. Then
(Fn/Kn)(∗) = Fn(∗)/Kn(∗) as Fréchet spaces by [Bos21, Lem. A.33]. By the surjectivity of
c-IndGI W(∗)→ π(∗), we know that π(∗) = lim−→n

πn(∗) as sets. Equip lim−→n
πn(∗) with the locally

convex inductive limit topology, then the map lim−→n
πn(∗) → π(∗) is a topological isomorphism

if π(∗) is equipped with the classical locally convex topology as an LF space by the open
mapping theorem. Since filtered colimits are exact [SC19, Thm. 1.10], it remains to show that
π = lim−→n

πn. Write π = lim−→n
Bn as a colimit of Fréchet spaces with injective transition maps.

Then π(∗) = lim−→n
Bn(∗) if we equip π(∗) with the locally convex inductive limit topology. As

HomE(π(∗), π(∗)) = lim←−n
lim−→m

HomE(πn(∗), Bm(∗)) by [Sch13b, Cor. 8.9], we see the two direct

systems (πn(∗))n, (Bn(∗))n are equivalent. Then the same holds for (πn)n, (Bm)m by the fully
faithful embedding of Fréchet spaces to solid E-spaces. Hence π = lim−→n

Bn = lim−→n
πn.
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We need also show that the map Hd ⊗H c-IndGI W → c-IndGI W maps surjectively on the
kernel K = lim−→n

Kn of c-IndGI W → π. This can be proved in the same way as in the preceding

paragraph using the surjectivity of Hd ⊗H c-IndGI W(∗)→ K(∗).
Finally, we suppose that W is a Smith space, for example, W has the form W♮,r(M). Then

there exist Banach spaces W,W ′ with injections W ′′ ⊂ W ⊂ W ′ such that the result holds for
W ′,W ′′. Using Proposition 2.2 and Corollary 2.3, ∧•Hd ⊗H c-IndGI W concentrates in degree
0 and there is an injection H/m ⊗H c-IndGI W ↪→ H/m ⊗H c-IndGI W ′. Since the surjection
c-IndGI W ′′ ↠ π factors through the injection H/m⊗H c-IndGI W ↪→ π ≃ H/m⊗H c-IndGI W ′, the
map c-IndGI W → π is also surjective. □

We consider the D(G,E)-bimodule Clac (G,E) = Cla(I, E)⊗D(I,E) D(G,E) as in §3.5.

Theorem 5.3. Suppose that W ∈ Mod♡E■
(D(I, E)) is a D(I, E)-module over a Smith E-space.

Then there is an isomorphism of solid D(G,E)-modules

RHomE■[G](c-Ind
G
I W, Clac (G,E)) ≃ c-IndGI W∨

where W∨ = HomE(W, E) with the usual dual action of I.

Proof. Since Clac (G,E) is nuclear being LB ([Bos21, Thm. A.43]) and W is Smith, we have
RHomE(W, Clac (G,E)) = HomE(W, Clac (G,E)) =W∨ ⊗L

E,■
Clac (G,E) (see [RJRC22, Lem. 3.8 &

Cor. 3.17]). We have (use [RJRC23, Lem. 3.1.7])

RHomE■[G](c-Ind
G
I W, Clac (G,E)) = RHomE■[I](W, Clac (G,E))

= RHomE■[I](E,RHomE(W, Clac (G,E)))

= RHomE■[I](E,W∨ ⊗L
E,■ Clac (G,E)))

= (ι(W∨)⊗ χ)⊗L
E■[I] C

la
c (G,E)[−dimG]

by [RJRC23, Prop. 3.1.12] where χ = det(g)−1 is a right G-module as in loc. cit. Then one sees
that

RHomE■[G](c-Ind
G
I W, Clac (G,E)) ≃ ((ι(W∨)⊗ χ)⊗L

E■[I] C
la(I, E))⊗L

E■[I] E■[G][−dimG].

By [RJRC22, Prop. 4.41], W is a Dh(I, E)-module (in the notation of [RJRC23, §3.1]) for h
large enough and is locally analytic. By the equivalence in [RJRC23, Thm. 4.1.7] (we use also
the notation in loc. cit. below),

(ι(W∨)⊗ χ)⊗L
E■[I] C

la(I, E)[−dimG] ≃ RHomE■[I](W, Cla(I, E))

= RHomModqcE■
(D(I,E))(j

∗W, j∗Cla(I, E)).

since both W and Cla(I, E) are (derived) locally analytic. Note that j∗Cla(I, E) = (Dh(I, E)⊗
χ−1[dimG])h (here χ−1 is viewed as a bimodule over D(G,E) where G acts trivially on the right
and via χ−1 on the left) and j∗W = (W)h large by [RJRC23, Exam. 4.1.9]. Use the trick as
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before we get (see also [RJRC23, Prop. 4.1.13])

RHomModqcE■
(D(I,E))(j

∗W, j∗Cla(I, E))

=R lim←−
h

RHomE■[I](W,Dh(I, E)⊗ χ−1[dimG])

=R lim←−
h

(ι(W∨)⊗ χ)⊗L
E■[I] D

h(I, E)⊗ χ−1[dimG]

=ι(W∨)[dimG].

where we used that Dh(I, E) are idempotent over E■[I] [RJRC22, Cor. 5.11] and that W∨ is a
Dh(I, E)-module for h large. The result follows by returning the right module to a left module
via the involution ι. □

Definition 5.4. For V ∈ ModE■
(D(G,E)), we define

DBZ(V ) := RHomE■[G](V, Clac (G,E))

which is in ModE■
(D(G,E)) (a priori may not in ReplaE■

(G)!) via the left translations of

Clac (G,E) by G.

Theorem 5.5. Let M ∈ Ob
alg and χsm be a smooth character of T . Then there exists an

isomorphism of locally analytic representations

DBZ(FG
B (M,χsm)) ≃ FG

B
(HomE(M,E)n

∞
,DBZ(χsm)).

Proof. The arguments for Theorem 3.21 together with Proposition 5.2 and Proposition 5.3 give
the duality. □

5.2. Stein spaces. For the discussions on patching functors later, we make some preparation
about coherent sheaves on Stein spaces, following [RJRC23].

We let s ≥ 1 and S = OE [[X1, · · · , Xs]] = OE [[Zs
p]]. Let S → R be a local morphism of

complete Noetherian local rings. We choose a presentation of R over S: let A = S ⊗OE ,■ B
for some B = OE [[Y1, · · · , Yt]] and suppose that R = A/I for an ideal I ⊂ A. For positive

integers h, k, we let S+
h = OE⟨

Xh
1
p , · · · ,

Xh
s
p ⟩, B

+
k = OE⟨

Y k
1
p , · · · ,

Y k
t
p ⟩, Sh = S+

h [
1
p ], and similarly

A+
h,k := S+

h ⊗OE ,■ B
+
k . Let R

+
h,k := A+

h,k/I. We write Ah := Ah,h, Rh := Rh,h for short. Finally,

define Srig := lim←−h
Sh, R

rig := lim←−h
Rh, A

rig := lim←−h
Ah. Then A

rig = Srig⊗L
E,■B

rig ([Bos21, Cor.

A.65, Cor. A.67, Prop. A.68]).
The rigid generic fiber Spf(R)rig of the formal scheme Spf(R) over Spf(OE) admits a covering

by affinoids Spa(Rh, R
+
h ). From any complete Huber pair as (Rh, R

+
h ) we obtain an analytic

ring (Rh, R
+
h )■ by [And21, Thm. 3.28]. We write Mod(Rh,R

+
h )■

for the (∞-)derived category

of (Rh, R
+
h )■-modules and write Mod♡

(Rh,R
+
h )■

for its heart [SC19, Prop. 7.5]. For h′ > h, by

[And21, Prop. 3.34, Lem. 3.31] (cf. [RJRC23, Lem. 2.1.9]), the map (Rh′ , R+
h′)■ → (Rh, R

+
h )■

of analytic rings factors through (Rh′ , R+
h′)■ → (Rh,OE)■ = (Rh,OE + R00

h )■ → (Rh, R
+
h )■

where R00
h denotes the subset of topologically nilpotent elements. Here (Rh,OE)■ denotes the

analytic ring induced from OE,■ [And21, Prop. 2.16], and Mod(Rh,OE)■ = ModE■
(Rh) is the

category of condensed Rh-modules whose underlying condensed E-vector spaces are solid. The
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category of quasi-coherent sheaves on Spf(R)rig is then equivalent to the limit (cf. [RJRC23,
§2.1.2, §4.1])

ModqcE■
(Rrig) := lim←−

h

Mod(Rh,R
+
h )■

= lim←−
h

ModE■
(Rh).

Thus a quasi-coherent sheaf on Spf(R)rig can be given by a sequence (Mh)h where Mh are solid
Rh-modules together with Mh′ ⊗L

Rh′ ,■
Rh = Mh for h′ > h. If (Mh)h, (Nh)h ∈ ModqcE■

(Rrig),

then

RHomModqcE■
(Rrig)((Mh)h, (Nh)h) = R lim←−

h

RHomRh
(Mh, Nh).

There is a “global section” functor

j∗ : ModqcE■
(Rrig)→ ModE■

(Rrig) :(5.1)

(Mh)h 7→ R lim←−
h

Mh.

Conversely, we have the “localization”:

j∗ : ModE■
(Rrig)→ ModqcE■

(Rrig) :(5.2)

M 7→ (M ⊗L
Rrig,■ Rh)h.

Recall by [RJRC22, Prop. 5.10], Ah and Arig are idempotent algebras over A, namely Ah ⊗L
A,■

Ah = Ah and Arig ⊗L
A,■ Arig = Arig. Moreover, Arig and Ah are flat over A [ST03, Prop.

4.7]. Since R = A/I, similar statements hold for Rh, R
rig. We see Rh = Ah ⊗L

A A/I and
Rrig = Arig⊗L

AA/I. Hence Rh = Ah⊗L
Arig,■R

rig and Rh⊗L
R,■Rh = (Ah⊗L

A,■Ah)⊗L
A,■A/I = Rh.

And Rh ⊗L
Rrig,■ Rh = Rh ⊗L

Rrig,■ R
rig ⊗L

Rrig,■ Rh = Rh ⊗L
R,■ Rh = Rh.

Lemma 5.6. The functor j∗ in (5.1) is fully faithful with the left adjoint j∗.

Proof. The statement is proved in [RJRC23, §4.1] ifR = A = OE [[Zd
p]] is the Iwasawa algebra of a

compact p-adic Lie group. In this case Arig = D(Zd
p, E). The fully faithfulness and the adjunction

property of j∗ is [RJRC23, Cor. 4.1.8]. In general, R = A/I for A = OE [[Zd
p]], d = t + s.

There are functors i∗ : ModqcE■
(Rrig) → ModqcE■

(Arig),ModE■
(Rrig) → ModE■

(Arig) given by

restrictions via the ring maps Arig → Rrig and Ah → Rh. The functors j∗ and j∗ defined above
(we use the same notation for A and R) commute with i∗: since Rh = Ah ⊗L

Arig,■ R
rig, we have

j∗M = (Rh ⊗L
Rrig,■ M)h = (Ah ⊗L

Arig,■ M)h for M ∈ ModE■
(Rrig). Using the statement for

A, for any M = (Mh)h ∈ ModqcE■
(Rrig), the natural morphism i∗j

∗j∗M = j∗j∗i∗M → i∗M
is an isomorphism. Notice that the functor i∗ is conservative, namely a morphism M → N of
Rrig-modules (or Rh-modules) is an isomorphism if and only if it is an isomorphism of Arig-
modules (this can be checked on the abelian level by taking cohomologies). Hence the counit
maps j∗j∗M→M are also isomorphisms which implies the fully-faithfulness of the functor j∗
for R. □

The ring maps S → A→ R induce morphisms
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Spf(R)rig Spf(A)rig = Spf(S)rig × Spf(B)rig

Spf(S)rig

i

f
g

of rigid analytic spaces. These maps admit !-functors: i!, i! = i∗, g
!, g!, etc., for the six functor

formalism in [Cam24, §3] (building on [Man22]) of quasi-coherent modules using, for example,
[Cam24, Prop. 3.3.6]. We will not essentially need the general machinery as we will treat only
coherent sheaves later as in Lemma 5.8 below.

Lemma 5.7. Suppose thatM = (Mh,k)h,k ∈ ModqcE■
(Arig) andM = j∗M∈ ModE■

(Arig). Then

the natural mapM → R lim←−h
(Sh⊗L

S,■M) is an isomorphism and g∗M is the quasi-coherent sheaf

attached to the Srig-module M via the localization.

Proof. By [RJRC23, Cor. 4.1.5], the inverse systems (Sh ⊗L
S,■ M)h is equivalent to (note that

HomE(Sh, E) is Smith)

(RHomS(HomE(Sh, E)[−s],M))h.

Taking inverse limit

R lim←−
h

Sh ⊗L
S,■ M = R lim←−

h

RHomS(HomE(Sh, E)[−s],M)

= R lim←−
h,h′,k

RHomS(HomE(Sh, E)[−s],Mh′,k)

= R lim←−
k,h′,h

Sh ⊗L
S,■ Mh′,k

= R lim←−
k,h

Mh,k =M

where we applied [RJRC23, Cor. 4.1.5] again for the inverse system over h to get the third
equality. □

For an affinoid algebra like Sh, an object M ∈ ModE■
(Sh) is said to be perfect if M is

quasi-isomorphic to a finite complex of finite projective Sh-modules (cf. [And21, Prop. 5.12]).

Lemma 5.8. Suppose that M ∈ ModE■
(Rrig) such that M ⊗L

Srig,■ Sh is a perfect Sh-module

for all h. Then M = j∗M ∈ ModE■
(Rrig) is in the essential image of j∗ where M = j∗M .

Moreover, there exists an isomorphism f∗M = f!M in ModqcE■
(Srig).

Proof. Fix h. We first prove that there exists k such thatMSh
:=M⊗L

Srig,■Sh is an Rh,k-module

(extending the R-module structure). In other words, we find k such that the natural R-map
MSh

→ Rh,k ⊗L
R,■ MSh

= Ah,k ⊗L
A,■ MSh

is an isomorphism. Since Ah,k = Sh ⊗E,■ Bk and

MSh
=MSh

⊗L
S,■ Sh, we see Ah,k ⊗L

A,■MSh
= (Sh ⊗E,■ Bk)⊗L

S⊗E,■B,■MSh
= Bk ⊗L

B,■ (S ⊗E,■

B) ⊗L
S⊗E,■B,■ MSh

= Bk ⊗L
B,■ MSh

. Hence it is enough to show that there exists k such that

the B-action on MSh
extends to Bk (recall that Bk ⊗L

B,■ Bk = Bk). By [RJRC22, Thm. 4.36],

it suffices to show that the cohomology groups Hn(MSh
) for all n are Bk-modules for some k.
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Since MSh
is a perfect Sh-module, there exist finitely many n such that Hn(MSh

) ̸= 0 and these
cohomology groups are finite Sh-modules, in particular Banach spaces. The desired action of
some Bk follows from [RJRC22, Prop. 4.41].

Now we prove f∗M = f!M. Since i is a closed embedding, i!M = i∗M. We may assume
R = A. Let MSh

:= (Mh,k := MSh
⊗L

A,■ Ah,k)k ∈ lim←−k
ModE■

(Ah,k). Then Mh,k = MSh
⊗L

A,■

Ah,k ⊗L
A,■ Ah,k′ = Mh,k′ for k′ ≥ k. By Lemma 5.7, g∗M = (MSh

)h. We calculate that for

Nh ∈ ModE■
(Sh),

RHomSh
(MSh

, Nh) = RHomS(MSh
⊗L

A,■ Ah,k, Nh)

= lim−→
k′
RHomA(MSh

, RHomS(Ah,k′ , Nh))

= lim−→
k′
RHomB(E,RHomSh

(MSh
, RHomS(Ah,k′ , Nh)))

= RHomB(E,RHomSh
(MSh

, lim−→
k′
RHomS(Ah,k′ , Nh)))

where for the last equality we used that E is a compact B-module (cf. [RJRC22, Thm.
5.7]) and MSh

is a compact Sh-module being perfect ([And21, Lem. 5.46, Cor. 5.51.1]).
The map RHomS(Ah,k′ , Nh) = RHomE(Bk′ , Nh) → RHomS(Ah,k′′ , Nh) for k′′ ≥ k′ factors

through RHomE(Bk′ , E) ⊗L
E,■ Nh by [RJRC23, Lem. 4.1.4]. Hence lim−→k′

RHomS(Ah,k′ , Nh) =

lim−→k′
RHomE(Bk′ , E)⊗L

E,■ Nh = HomE(B
rig, E)⊗L

E,■ Nh. And by [RJRC23, Exam. 4.1.9],

(5.3)

(Ah,k⊗L
A,■ (HomE(B

rig, E)⊗L
E,■Nh))k = (Bk⊗L

B,■HomE(B
rig, E)⊗L

E,■Nh)k = (Bk⊗L
E,■Nh[t])k.

Hence

RHomModqcE■
(Srig)(g∗M, (Nh)h) = R lim←−

h

RHomS(MSh
, Nh)

= R lim←−
h

RHomA(MSh
, lim−→

k′
RHomE(Bk′ , E)⊗L

E,■ Nh)

= R lim←−
h

RHomA(MSh
,HomE(B

rig, E)⊗L
E,■ Nh)

= R lim←−
h,k′

RHomA(MSh
, Ah,k′ ⊗L

S,■ Nh[t])

= RHomModqcE■
(Arig)(M, g!(Nh)h)

= RHomModqcE■
(Srig)(g!M, (Nh)h)

where for the fourth equality we used (5.3) and the fully faithfulness of j! [RJRC23, Thm. 4.1.7]
since MSh

and HomE(B
rig, E) ⊗L

E,■ Nh are derived locally analytic for the action of Zt+s
p . We

used that g is cohomologically smooth of relative dimension t for the fifth equality. We conclude
that g∗M = g!M by the Yoneda lemma. □

5.3. Patching functors and patching modules. The Taylor-Wiles-Kisin patching method
has been indispensible for p-adic Langlands program and motivated Emerton-Gee-Hellmann’s
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categorical p-adic local Langlands conjecture [EGH23, §3]. The abstract formalism of the patch-
ing functor for GLn(OL)-representations was proposed in [EGS15, §6] and the patching of com-
pleted cohomologies or GLn(L)-representations was carried out in [CEG+16]. The method was
applied to locally analytic settings by Breuil-Hellmann-Schraen in [BHS19], etc. and more re-
cently in [HHS24]. We will work with the abstract patching modules reviewed below. The Serre
duality of patching modules in this subsection is well-known at least in modular settings (e.g.,
[Man21, Man24]). Our aim is to explain its direct relationship with the Bernstein-Zelevinsky
duality for locally analytic representations.

We assume the existence of the following abstract patching data. We suppose that G =
GLd(L), d ≥ 2 with the standard Iwahori subgroup I.

Let S∞ → R∞ be a local morphism of complete Noetherian local rings over OE with the
residue fields OE/ϖE . Assume that there exists s ≥ 1 such that S∞ = OE [[X1, · · · , Xs]] ≃
OE [[J ]] for J = Zs

p. Then the Iwasawa algebra S∞[[I]] ≃ OL[[Ĩ]] where Ĩ = I × J = I × Zs
p.

Similarly, write G̃ = G× J .
Suppose that there is a (big patching) module M∞ over the ring R∞[GLn(L)] such that there

exists an isomorphism M∞|H ≃ S∞[[H]]a as topological H-modules for an open normal pro-p
subgroup H ⊂ I. Hence M∞ is finite projective over S∞[[I]].

We assume the existence of the Poincaré dual ofM∞ consisting of the following data. Suppose
that there are isomorphisms η : S∞ → S′

∞, R∞ → R′
∞ of local OE-algebras and M ′

∞ is a big
patching module over R′

∞. We assume that there exists an R∞ ×GLn(L)-equivalent S∞-linear
isomorphism

HomS∞[[I]](M∞, S∞[[I]]) ≃M ′
∞

where R∞ acts onM ′
∞ via η. The existence of such isomorphism is provided in [Din24, Cor. D.9]

which is a patched version of the Poincaré duality of completed cohomologies ([CE12, §1.3]).
The map η in [Din24] is essentially induced by ρ 7→ ρ∨ ⊗ ϵ1−d of Galois representations where
(−)∨ means the dual representation and ϵ denotes the cyclotomic character (see [Zhu20, (3.9)]
in terms of the Cartan involution of the C-group).

With the big patching modules, we can define patching functors for locally analytic represen-

tations. Let M rig
∞ = D(Ĩ , E)⊗S∞[[I]],■ M∞ and define similarly M

′,rig
∞ . Using that M∞ is finite

projective over S∞[[I]], we obtain an R∞-linear D(Ĩ , E)-isomorphism

RHomD(G̃,E)
(M rig

∞ ,D(G̃, E)) = RHomD(Ĩ,E)
(M rig

∞ ,D(Ĩ , E)) ≃M ′,rig
∞

where D(G̃, E) = RHom
E■[G̃]

(Clac (G̃, E), E) with two left D(G̃, E)-module structures given by

left and right multiplications (cf. [ST05] or [RJRC23, §4.2]).
Set Rrig

∞ = lim←−h
Rh, S

rig
∞ = lim←−h

Sh as projective limits of affinoid E-algebras as in §5.2, which
are Fréchet-Stein algebras. Recall we have a localization functor j∗ (5.2) for solid Rrig

∞ -modules.

LetMrig
∞ := j∗M rig

∞ ∈ ModqcE■
(Rrig

∞ ) and similarlyM
′,rig
∞ .

Definition 5.9. We define the patching functor Arig
∞ : ModE■

(D(G,E)) → ModqcE■
(Rrig

∞ ) (fol-

lowing the notation of [EGH23]) by

Arig
∞ (π) := j∗M rig

∞ ⊗L
D(G,E),■ π = j∗(M rig

∞ ⊗L
D(G,E),■ π)

for π ∈ ModE■
(D(G,E)). Similarly A

′,rig
∞ (π) :=M

′,rig
∞ ⊗L

D(G,E),■ π.
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For convenience, we also define the functor Arig
∞ : ModE■

(D(G,E))→ ModE■
(Rrig

∞ ) by

π 7→ Arig
∞ (π) :=M rig

∞ ⊗L
D(G,E),■ π

so that Arig
∞ = j∗ ◦Arig

∞ .
If W is a locally analytic I-representation concentrated in degree 0, then

Arig
∞ (c-IndGI W) =M rig

∞ ⊗L
D(G,E),■ c-IndGI W =M rig

∞ ⊗D(I,E),■W

since M rig
∞ is finite projective over D(I, E) ⊗E,■ D(J,E). We see Arig

∞ (c-IndGI (−)) is exact on

Mod♡E■
(D(I, E)). Suppose that the Hecke algebraH acts on c-IndGI W as in §2.1 and m is the cor-

responding maximal ideal ofH, thenH acts on c-IndGI W as homomorphism of D(G,E)-modules.

Apply Arig
∞ to the complex c-IndGI W⊗L

HH/m := ∧•Hd⊗H c-IndGI W in ModE■
(D(G,E)), we see

Arig
∞ (c-IndGI W ⊗L

H H/m) ≃ Arig
∞ (c-IndGI W)⊗L

H H/m.

And the isomorphism holds after pulling back via j∗.

Lemma 5.10. Let W ∈ Mod♡E■
(D(I, E)) be a solid locally analytic representation over a Smith

E-space. There exist isomorphisms of solid Srig
∞ -modules

M
′,rig
∞ ⊗L

D(I,E),■W
∨ ≃ RHom

Srig
∞
(M rig

∞ ⊗L
D(I,E),■W, Srig

∞ ) = Hom
Srig
∞
(M rig

∞ ⊗D(I,E),■W, Srig
∞ ).

Proof. We calculate that

M
′,rig
∞ ⊗L

D(I,E),■W
∨

≃RHomD(Ĩ,E)
(M rig

∞ ,D(Ĩ , E))⊗L
D(Ĩ,E),■

(D(Ĩ , E)⊗L
D(I,E),■W

∨)

≃RHomD(Ĩ,E)
(M rig

∞ ,D(Ĩ , E)⊗L
D(I,E),■W

∨)

where for the last equality we used thatM rig
∞ is fintie projective overD(Ĩ , E). WhileD(Ĩ , E)⊗L

D(I,E),■

W∨ = (Srig
∞ ⊗L

E,■ D(I, E))⊗L
D(I,E),■W

∨ = Srig
∞ ⊗L

E,■W∨ = Srig
∞ ⊗E,■W∨ since W∨ is flat over

E [Bos21, Cor. A.65]. As Srig
∞ is nuclear [RJRC22, Prop. 3.29] and W∨ = RHomE(W, E)

for W Smith, we have Srig
∞ ⊗L

E,■ W∨ = RHomE(W, Srig
∞ ) (cf. [Bos21, Prop. A.55]). Take the

adjunction (cf. [RJRC23, Lem. 3.1.7])

RHomD(Ĩ,E)
(M rig

∞ ,D(Ĩ , E)⊗L
D(I,E),■W

∨) =RHom
E■[Ĩ]

(M rig
∞ , RHomE(W, Srig

∞ ))

=RHomE■[J ](E,RHomE■[I](M
rig
∞ , RHomE(W, Srig

∞ )))

=RHomE■[J ](E,RHomE(M
rig
∞ ⊗L

E■[I]W, Srig
∞ ))

=RHomE■[J ](M
rig
∞ ⊗L

E■[I]W, Srig
∞ ),

we get the result since Srig
∞ = D(J,E) is an idempotent algebra over E■[J ]. □

The following proposition is a standard result of the eigenvariety machinery.

Proposition 5.11. Let W = W♮,r(τ(M)∨ ⊗ χsm) as in Theorem 3.15. Then the solid Srig
∞ -

modules Arig
∞ (c-IndGI W)⊗L

H H/m is a perfect object in ModqcE■
(Srig

∞ ).
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Proof. We show that (Sh ⊗Srig
∞ ,■ A

rig
∞ (c-IndGI W)) ⊗L

H H/m is a perfect Sh-complex for each h.

We would like to write a proof for W = DIn−an(I, E) ⊗D(g,I∩B) M for some n in Remark 3.16

and M = τ(M)∨ ⊗ χsm. Then M rig
∞ ⊗D(I,E),■ W = M rig

∞ ⊗D(I,E),■ DIn−an(I, E) ⊗D(g,I∩B) M .

This will not change Arig
∞ (c-IndGI W ⊗L

H H/m).

Since M rig
∞ is finite projective over D(Ĩ , E), we can write M rig

∞ = e.D(Ĩ , E)a ⊂ D(Ĩ , E)a

for some integer a and a D(Ĩ , E)-linear projection e : D(Ĩ , E)a → D(Ĩ , E)a. Then Sh ⊗Srig
∞ ,■

Arig
∞ (c-IndGI W) = e.(Sh⊗E,■W)a. For t ∈ T−, Ut ∈ H induces e.(Sh⊗E,■W)a → e.(Sh⊗E,■W)a.

Since W is Smith, e.(Sh ⊗E,■ W)a is a compact object in ModE■
(Sh). We claim that if t is

sufficiently regular (t−1(In ∩N)t ⊂ In+1 ∩N), then Ut is a trace class map [SC20, Def. 13.11].
By the construction (Lemma 3.3 and Lemma 2.10), ψt :W →W, induced from the multipli-

cation of ×t−1 on

DIn−an(In(I ∩B), E)⊗D(g,I∩B) M = Dan(In, E)⊗D(g,In∩B) M.

Hence ψt factors through the E-map

ι : D(t−1Int∩I)−an(I, E)⊗D(g,I∩B) M → D
In−an(I, E)⊗D(g,I∩B) M.

We show that ι is trace-class. By [RJRC22, Lem. 3.36], we need to show that the map factors
through the Banach space DIn−an(I, E)B ⊗D(g,I∩B) M attached to the target ([RJRC22, Def.

3.34]). If M = D(g, I ∩ B) ⊗D(I∩B) σ = U(g) ⊗U(b) σ for a finite-dimensional representation

σ of B, then DIn−an(I, E) ⊗D(g,I∩B) M = D(In∩N)−an(I ∩ N,E) ⊗E σ and ι factors through

D(In∩N)−an(I ∩N,E)B ⊗E σ since t−1(In ∩N)t ⊂ In+1 ∩N is relatively compact in In ∩N (cf.
[Eme06, Prop. 4.2.22]). In general, M admits a presentation as in Lemma 3.3

U(g)⊗U(b) σ
′ → U(g)⊗U(b) σ →M

for some σ, σ′, which can be used to show that ι factors through DIn−an(I, E)B ⊗D(g,I∩B) M ,

the cokernel of D(In∩N)−an(I ∩N,E)B ⊗E σ
′ → D(In∩N)−an(I ∩N,E)B ⊗E σ.

The base change to Sh of ι is still of trace-class (cf. [And21, Rem. 5.31]), as well as the
following map (by checking the definition or using [Bos23, Lem. A.14])

(Sh ⊗Srig
∞ ,■ M

rig
∞ )⊗D(I,E),■ D(tInt−1∩I)−an(I, E)⊗D(g,I∩B) M = e.(Sh ⊗E,■ D(tInt−1∩I)−an(I, E)⊗D(g,I∩B) M)a

(5.4)

→ (Sh ⊗Srig
∞ ,■ M

rig
∞ )⊗D(I,E),■ DIn−an(I, E)⊗D(g,I∩B) M = e.(Sh ⊗E,■ DIn−an(I, E)⊗D(g,I∩B) M)a.

Recall by definition (2.1), Ut is given by

M rig
∞ ⊗D(I,E),■W →M rig

∞ ⊗D(G,E),■ c-IndGI W =M rig
∞ ⊗D(I,E),■W

(5.5)

m⊗ w 7→ m⊗
∑

x∈I/(tIt−1∩I)

[xt, ψt(x
−1w)] =

∑
x∈(I∩N)/t(I∩N)t−1

t−1x−1.m⊗ ψt(x
−1w).

The formula for (5.5) defines a map

(Sh⊗Srig
∞ ,■M

rig
∞ )⊗E,■DIn−an(I, E)⊗D(g,I∩B)M → (Sh⊗Srig

∞ ,■M
rig
∞ )⊗E,■D(tInt−1∩I)−an(I, E)⊗D(g,I∩B)M.
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The above map descends to the following map (cf. [Eme06, Lem. 4.2.11]).

(Sh ⊗Srig
∞ ,■ M

rig
∞ )⊗D(I,E),■ DIn−an(I, E)⊗D(g,I∩B) M(5.6)

→ (Sh ⊗Srig
∞ ,■ M

rig
∞ )⊗D(I,E),■ D(tInt−1∩I)−an(I, E)⊗D(g,I∩B) M.

Hence Ut : e.(Sh ⊗E,■W)a → e.(Sh ⊗E,■W)a is trace-class being the composite of (5.6) and
the trace class map (5.4) by [CS22, Lem. 8.2]. By discussions in [CS22, §9] and the proof of

[CS22, Prop. 9.11] or [And21, Lem. 5.51], cone(1−Ut) = Sh⊗Srig
∞ ,■A

rig
∞ (c-IndGI W)⊗L

HH/(Ut−1)
is a perfect Sh-complex. In a more classical language, the map Ut can be factored as e.(Sh⊗E,■

W)a
g→ V

f→ e.(Sh ⊗E,■ W)a for some Banach Sh-module V (that is a direct summand of an
orthonormalizable Banach Sh-module). Then cone(1 − Ut) ≃ cone(1 − g ◦ f) with g ◦ f an
Sh-compact operator on V and is perfect over Sh by the classical Fredholm theory (see [Eme06,
Prop. 2.2.6]).

Finally, H/(Ut − 1) is a Noetherian regular ring (finite étale over a polynomial ring, of the
form E[Ut1 , · · · , Utd ]/(U

s1
t1
· · ·U sd

td
− 1)), hence has finite global projective dimension [Sta24,

Tag 00OE]. We get that H/m admits a finite projective resolution over H/(Ut − 1). Hence

Sh⊗Srig
∞ ,■A

rig
∞ (c-IndGI W∨)⊗L

HH/m = (Sh⊗Srig
∞ ,■A

rig
∞ (c-IndGI W)⊗L

HH/(Ut− 1))⊗L
H/(Ut−1)H/m

is also a perfect Sh-complex ([Sta24, Tag 066R]). We finished the proof. □

ForM = (Mh)h ∈ ModqcE■
(Rrig

∞ ), we let

DGS(M) := RHom
ModqcE■

(Rrig
∞ )

(M,f !(Sh)h)

where f : Spf(R∞)rig → Spf(S∞)rig is induced by S∞ → R∞ as in §5.2 and (Sh)h denotes the
structure sheaf of Spf(S∞)rig. The following theorem should be compared with [Zhu20, Conj.
4.5.1 (1)] and [EGH23, Conj. 6.1.14 (3) & Rem. 6.2.22].

Theorem 5.12. Let M ∈ Ob
alg and χsm be a smooth character of T . Let π = FG

B (M,χsm) as in
Theorem 5.5. Then there exists an isomorphism

DGS(A
rig
∞ (π)) ≃ η∗A′,rig

∞ (DBZ(π)).

in ModqcE■
(Rrig

∞ ).

Proof. Write FG
B (M,χsm) = c-IndGI W ⊗L

H H/m as in Proposition 5.2 using Theorem 3.15. By

Proposition 5.11, Arig
∞ (c-IndGI W ⊗L

H H/m) is a perfect object in ModqcE■
(Srig

∞ ) ⊂ ModE■
(Srig

∞ ).

By Lemma 5.8, Arig
∞ (c-IndGI W ⊗L

H H/m) = j∗A
rig
∞ (c-IndGI W ⊗L

H H/m) and

f!A
rig
∞ (c-IndGI W ⊗L

H H/m) = f∗A
rig
∞ (c-IndGI W ⊗L

H H/m).

One can check formally that the isomorphism in Lemma 5.10 is compatible with the actions

of H, where H acts on A
′,rig
∞ (c-IndGI W∨) via the transpose in Lemma 3.18. By Theorem 5.3 and

https://stacks.math.columbia.edu/tag/00OE
https://stacks.math.columbia.edu/tag/066R
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the Koszul duality [Ser97, Chap. IV.A.2] (we omit the pullback η∗ in the following)

RHom
Srig
∞
(Arig

∞ (c-IndGI W)⊗L
H H/m, Srig

∞ )

≃RHomH(H/m, RHomSrig
∞
(Arig

∞ (c-IndGI W), Srig
∞ ))

≃A′,rig
∞ (c-IndGI W∨)⊗L

H H/m[−d]

=A
′,rig
∞ (DBZ(c-Ind

G
I W ⊗L

H H/m)).

Applying the adjunctions, we get identifications of Rrig
∞ -module objects in ModqcE■

(Srig
∞ ):

f∗RHomModqcE■
(Rrig

∞ )
(Arig

∞ (c-IndGI W ⊗L
H H/m), f !(Sh)h)

=RHom
ModqcE■

(Srig
∞ )

(f!A
rig
∞ (c-IndGI W ⊗L

H H/m), (Sh)h)

=RHom
ModqcE■

(Srig
∞ )

(f∗A
rig
∞ (c-IndGI W ⊗L

H H/m), (Sh)h)

=j∗RHom
Srig
∞
(Arig

∞ (c-IndGI W ⊗L
H H/m), Srig

∞ )

=f∗A
′,rig
∞ (DBZ(c-Ind

G
I W ⊗L

H H/m))

where for the third equality, we used the fully faithfulness of j∗ (for S∞) and Lemma 5.7. The

functor f∗ sending ModqcE■
(Rrig

∞ ) to Rrig
∞ -modules in ModqcE■

(Srig
∞ ) is fully faithful (composed with

the global section functor for ModqcE■
(Srig

∞ ) it gives that for ModqcE■
(Rrig

∞ ) in Lemma 5.6). We

conclude that

RHom
ModqcE■

(Rrig
∞ )

(Arig
∞ (c-IndGI W ⊗L

H H/m), f !(Sh)h) ≃ A
′,rig
∞ (DBZ(c-Ind

G
I W ⊗L

H H/m))

which gives the desired isomorphism. □
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