GEOMETRIC TRANSLATIONS OF (¢,I')-MODULES FOR GL2(Q,)

ZHIXIANG WU

ABSTRACT. We study “change of weights” maps between loci of the stack of (¢,I')-modules
over the Robba ring with integral Hodge-Tate-Sen weights. We show that in the GL2(Qjp)
case these maps can realize translations of (¢, I')-modules geometrically. The motivation is to
investigate translations of locally analytic representations under the categorical p-adic Langlands

Correspondence.
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1. INTRODUCTION

In this introduction we consider translations of locally analytic representations of p-adic Lie
groups from the point of view of the categorical p-adic Langlands program proposed by Emerton-
Gee-Hellmann in [EGH23]. We will give hints for the categorical story in the GL2(Q,) case by
realizing Ding’s result in on translations of (¢, I')-modules in arithmetic families.

1.1. Translations for locally analytic representations. Translation is a fundamental tool to
study modules over a reductive lie algebra g, an operation changing infinitesimal characters. Let us
take g = gl,,,n > 2 to be the Lie algebra of GL,, over a p-adic coefficient field L for a prime number
p with the Cartan subalgebra t of the diagonal matrices. Let U(g) be the universal enveloping
algebra and Z(g) be the center of U(g). Via the Harish-Chandra isomorphism an (infinitesimal)
character x» : Z(g) — L is determined by a weight A = (A1, -+, \,,) € t*. We can consider the
category Mod(U(g))y, of U(g)-modules which are generalized eigenspaces for the action of Z(g)
of eigenvalues given by . For another p € t* such that A — p € Z™ is integral, the translation
operator gives a functor
TY : Mod(U(g)), — Mod(U(g))s,.

If A and p are both dominant integral and have the same regularity (in the sense of the stabilizers
in the Weyl group for the dot action), T%" induces an equivalence of categories. While translations
between regular and non-regular characters (into and out of the walls) are more interesting.
Locally analytic representations of a p-adic Lie group G, say G = GL,(Q,), are naturally g-
modules by differentiating the G-actions. Under p-adic Langlands correspondence, infinitesimal
characters of locally analytic representations correspond to generalized Hodge-Tate(-Sen) weights
of the associated p-adic Galois representations, cf. [DPS20]. Translations for locally analytic rep-
resentations were studied by Jena-Lahiri-Strauch in [JLS21]. If a locally analytic representation
is in Mod(U(g))y,, then its translation 74w is still a locally analytic representation, with gener-
alized infinitesimal character x,. It is then extremely interesting to investigate how translations
intertwine with the Langlands correspondence. The operations that change weights were already

The project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project-
ID 427320536 — SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics
Minster: Dynamics—Geometry—Structure.

1



2 ZHIXIANG WU

observed by Colmez in [Coll8]. A more systematic study was carried out by Ding in [Din23|, based
on Colmez’s construction D +— D' X P! of p-adic local Langlands [Coll0, [Col16] from rank two
(¢, T')-modules over the Robba ring to locally analytic representations of GL2(Q),). Ding’s idea is
to translate (¢, T)-modules firstly which can be equipped with g-actions using Colmez’s method
(by the infinitesimal action of G on D = DX Z, C D K P!). Ding proposed recently in [Din24]
conjectures to study p-adic Langlands correspondences for general GL,, via translation functors.

1.2. Categorical p-adic Langlands conjecture. Let Rig; be the category of rigid analytic
spaces over L. Emerton-Gee-Hellmann consider in [EGH23] the moduli stack X,, (over Rig;) of
(¢,T)-modules of rank n over the Robba ring, which should be viewed as the p-adic analytic
version of the stack of Langlands parameters for GL,,(Q,). Let le’Ap(an.G) be the derived category
of locally analytic representations of G = GL,(Q,) (with conjectural finiteness condition discussed
in [EGH23| §6.2]) and let D2, (X,) be the derived category of coherent sheaves on X,. The
analytic version of the categorical p-adic Langlands correspondence predicts the existence of a
functor .
Agt : DY (an.G) — D, (%)

which should satisfy various properties, particularly including the compatibility between infinites-
imal characters and Hodge-Tate-Sen weights.

Let h = (hy, - ,hy) € Z", b1y < --- < h, be fixed integral Sen weights and A = A, =
(hp — (n—1),--+ ,h; — (i = 1),-+- ,h1) be the corresponding (automorphic) weight of t. Let
D} (an.G)y, C D} (an.G) be the full subcategory consisting of representations with generalized
infinitesimal character xx. We consider the substack (X,)f, (appeared in [EGH23| §5.3.22]), the
formal completion of X,, along the weight h locus. For an affinoid algebra A, the A-value of (%,,)5
is the groupoid of (¢, T")-modules D4 of rank n over Sp(A) such that for any point 2 € Sp(A), the

specialization D4 ® 4 k(z) has Sen weights h. Then 23* should restrict to a functor:
i b b
Ak Df.p(an'G)XA — Déon((Xn)n)-
For different integral weights Ap, Ap/, the composite of ngg and the translation functor T ;‘:' :
D?.p(a’n’G)XAh — le’.p(an.G)th/ translates sheaves on (X,)p to (X,);,. If one believes in an
ultimate equivalence of categories statement of the categorical p-adic Langlands correspondence

as Fargues-Scholze (see [EGH23| Rem. 1.4.6]), it is then natural to ask if there exists a morphism

between spaces (X,,)p and (%,,)5 (that induces translations of sheaves).

1.3. Change of weights. The functor ngg is in conjectural and the geometric properties of X,,
are largely unknown. However, the answer to the question above is positive. We suppose that h is
regular for simplicityﬂ and let 0 = (0,---,0) be the zero weight. Let B be the Borel subgroup of
upper triangular matrices of GL,, with Lie algebra b. Consider the Grothendieck resolution

f:g=GL, x®b={(r,gB) € g x GL,/B| Ad(g"')(v) € b} = g,(v,gB) = v
where Ad denotes the adjoint action.
Proposition 1.1 (Proposition [3.12). There exists a (change of weights) morphism of stacks
(1.1) for (Xn)n = (Xa)o

such that the following commutative diagram of stacks over Rigy,

(Xn)h 2% §/GL

(1.2) lfh lf :

Dpar
(%n){)\ % 9/GL,
is Cartesian.

The morphisms Dpggr are the local model maps defined in loc. cit. It firstly sends a (p,T')-
module D to the associated Bjg-representation Wi (D) of Gal(Q,/Q,) which, using Fontaine’s
classification, gives a rank n bundle Dygr (D) with a (Hodge) filtration Fil®*Dyqr(D) stabilized
under a nilpotent linear endomorphism v. The filtration depends on the regularity of Sen weights
and is parametrized by the stack x/P = (GL, /P)/GL,, where GL,,/P is a flag variety and P = B,

1Namely h1 < --- < hy. Proposition works for general GL,, (K') and non-regular h with suitable modifications.
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resp. P = GL,, in the case of weight h, resp. 0. In the language of B-pairs of Berger [Ber08al,
the map fn, already pointwisely described in [Din24, Lem. 2.1], sends the B-pair (W,, W)
attached to D to (We, W(;FRO) where W(;FRO is the unique Gal(Q,/Q,)-invariant BJg-lattice inside
War (D) = Wi (D)[1] of weight 0 associated to the trivial filtration of Dyqr (D). The proof of the
isomorphism
(xn)ﬁ = (xn)(/)\ Xg/GLn E/GLn

is a simple combination of the known family versions of the equivalence between (¢, T')-modules
and B-pairs and the classification of B;R—representations with integral weights (see Appendix .

Remark 1.2. The condition for a (¢, I')-module D with integral weights being de Rham is equivalent
to the vanishing of the nilpotent endomorphism v on Dpar(D) = Dar(D). Let XPF be the stack
of rank n de Rham (¢,T')-modules of weight zero (so called p-adic differential equations). The
restriction of the diagram to v =0 locus is

XD® x, /a1, */B — #/B = (GL,/B)/GLy,

J{fh Jf
xbe */GL,,.
Thus X5F %, /g1, */B is isomorphic to the stack of de Rham (¢, I')-modules of weight h. On the
other hand, using Berger’s equivalence [BerO8b], this stack is locally isomorphic to WD,, X, /a1, */ B

([EGH23| Thm. 5.2.4]) where WD,, is the analytification of the stack of Weil-Deligne representa-
tions of rank n.

An immediate consequence of Proposition [1.1] is the existence of isomorphisms between loci
of X,, with different regular Hodge-Tate-Sen weights. We will use fy to realize translations of
(¢, T')-modules in GL2(Q))-case and then discuss a general speculation.

1.4. Geometric translations of (¢,I')-modules. Now we focus on the case G = GL2(Q),) where
we have Colmez’s construction. The main result of this paper can only be stated and proved in this
case. Following Colmez, there is a unique way to make a (¢, I')-module D4 over an affinoid Sp(A)
a g-module so that Z(g) acts via a character determined by the Sen weights of D4, cf. [Dos12].
If Dy € (X2)1,(A) for some fixed weight h with associate A = A, € t*, then one can talk about
the translation T§'D4 to another integral weight as g-modules. Ding’s method shows that T%'D 4
is still a (¢, T')-module. The following is our main theorem.

Theorem 1.3 (Theorem . Suppose h = (hy,h) € Z?,hy < hg, A = Ap, it = Ao = (—1,0).
Let Dx,)p (resp. Dx,)p) be the restriction of the universal (,T')-module on X3 to (X2)y, (resp.
to (X2){). Then the following statements are true locally on affinoid charts of Xo (namely on any
Sp(A) with a formally smooth map Sp(A) — X3).

(1) There exists an isomorphism

T)l\LD(x2)ﬁ = f;:D(xz)Q

of (¢, T')-modules of rank two which induces the map fn : (X2)p — (X2){-
(2) There exists an isomorphism

TaDexsyy = RfnsDizxs)
of (¢, I')-modules of rank four and in degree 0 on (X3){.

A
h

Certainly, all objects in the above theorem need proper definitions. The theorem will be stated
and proved without the language of stacks. For a chart Sp(A) — X3 with D4 the pullback of
the universal (p,')-module, we construct the space Sp(A4)" = Sp(A) xx, (X2){ as what should
be called an affinoid formal rigid space. Using Proposition we only need to prove the results
for the map f;, '(Sp(4)") = Sp(A)" X4/aL, 8/GLa — Sp(A)" between formal rigid spaces and
(¢,T')-modules over these spaces. Fortunately, the map is proper and the cohomologies can be
studied via GAGA theorems (see Appendix .

The key of the proof is the geometric properties of the Grothendieck resolution f : g — g. For
example, R f,OF concentrates in degree 0 and is locally free of rank two over Oy, which is basically
the reason that R fh7*D(x2)ﬁ has rank four and concentrates in degree 0. Another vital input is
the flatness of the local model map Dpqr (to use flat base change). We can prove the flatness of
Dpar in GL2(Qp) case (§3.4) and we expect it is always flat for other G.
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1.5. Speculation. Finally, we explain the motivation of Theorem For U(g)-modules with
a generalized infinitesimal character, translation functors can be realized geometrically using
Beilinson-Bernstein localization, cf. [BG99]. A better approach for translations (into and out
of the wall) is to consider singular localizations which send Mod(U(g))y, for non-regular x,, to
some D-modules on corresponding partial flag varieties G/P [BK15, BMRO6]. Then translation
functors after localization can be realized using pushforward and pullback along the maps between
flag varieties like G/B — G/ P, see [BK15, §6] and more similarly [BMROG, Lem. 2.2.5].

The functor ngg in §1.2]is expected to be certain localization, of the form ([EGH23, Rem. 6.2.9))

~L
where D(G) is the distribution algebra of G and L., plays the role of the sheaf of differential
operators on X,,. As in Proposition we fix a regular Hodge-Tate weight h (resp. non-regular
weight 0) and let x (resp. x,) be the associated infinitesimal character. With the map (1.1)), we
get a diagram of functors

ri

A
Df p(an G)X/\ — Dléoh Xn )ﬁ)

TiHTf HR fioy

rig

Ag
le).p(an‘G)Xu — D%oh((x )0)

Question 1.4. In the above diagram, do we have AnEoTt = Rfy, .oALE and nggOTlf = LfyoAB?

Taking account of the adjunction for translation functors, this suggests to ask whether we have
isomorphisms (where wg denotes the longest element in the Weyl group)

(1.3) T 0% Lool(xayp = LinLoola)p
(1.4) _&U&L Eoo|(xn)6\ ~ th,*ﬁoo|(xn)ﬁ?

Remark 1.5. The sheaf L, should be a family version of the dual of II(D) where for a (¢, I')-module
D of rank n, we write II(D) for the conjectural locally analytic representation of GL,(Q,) attached
to D via p-adic local Langlands correspondence. The expected isomorphism T’ w(;’f ﬁoo\(xn)g ~
LfyLool(x,)s 18 just a family (dual) version of a conjecture of Ding [Din24, Conj. 1.1, (1)]: if D
has Hodge-Tate-Sen weights h, then T{'TI(D) = II(fu(D)).

At present, there is no construction of the sheaf £, for n > 2. In the case of GL2(Q),), as in the
Banach case [EGH23, §7.3], L should be the family version of Colmez’s construction D ~ D!XP?!
from (p,T')-modules to D(G)-modules (up to a twist). An easier object to construct is D X P!
as only U(g)-modules, which equals to copies of (p,T')-modules. The main theorem immediately
implies the following (compared with and up to a twist).

Corollary 1.6 (Corollary [5.24)). In the notation of Theorem the following isomorphisms of
sheaves of U(g)-modules hold locally on affinoid charts of X9 with suitable definitions of the objects:

T)A\LD(xz)}A, RP' o~ Lf;D(xz)Q x Pl’
Ty D(x,)p P~ Ry Dix,)n RP'.

Remark 1.7. In the trianguline cases, we expect that the identification of functors in Question
applying for finite slope Orlik-Strauch representations is compatible with the conjectural descrip-
tion of A (7) using local models and Bezrukavnikov’s functor in [EGH23], §6.2.25], provided the
version of loc. cit. for non-regular weights (see [Wu21] for a discussion on cycles).

Remark 1.8. Geometric translations for real local Langlands correspondence were already discussed
to some extent, cf. [ABV92, §16], [Strld], etc.

1.6. Outline. We review basics on Grothendieck-Springer resolutions in In we study the
change of weights maps and prove Proposition and show that the local model map is flat in
the GL2(Qp)-case. In we compute translations of (o, T')-modules in families. We prove the
main theorem on geometric translations in §§ We also show in §5.3 how to recover some of Ding’s
pointwise calculation of translations from our main Theorem In two appendices [A] and [B] we
collect facts on families of (¢, I')-modules over the Robba rings and formal rigid geometry.
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1.8. Notation. We fix a prime number p. We use L a finite extension of Q, as the coefficient
field.

Suppose that K is a p-adic local field. Let Koo = K(tioo) = UK (upm) be the extension of
K by adding all p-th power roots of unity, and I'x = Gal(K/K). Also let K, = K(ppm) for
m > 1. Let Gg = Gal(@p/K) be the absolute Galois group of K. We write I' = T'g if K = Q,.

Let € be the cyclotomic character of Gx viewed also as the character Normg /g, |[Normg g, [, of
K* where |p|, = p~!. In our convention, the cyclotomic character has Hodge-Tate weights one.

We follow the notation of (¢, I')-modules in [KPX14]. If X is a rigid space, we write R x x for the
Robba ring of K over X [KPX14, Def. 6.2.1]. If A is an affinoid algebra, write Ra, x := Rsp(a),x

We also need the Robba rings Ry ;- and 72[‘g " for 0 < s < r small enough in the sense of [KPX14
Def. 2.2.2]. The ring R[S T] is the ring of s1ngle variable rigid analytic functions converging over
U[I?(,)T] = {p 771 < |X| < p 71} with coefficients in K}, the maximal unramified subfield of K,

and R@ K L < R([@ ]K is the functions on UK, = U0<S<TU[K, ]. Then R[S o R([SﬁK@QPA

and RY x = L <r R[q " The group I'ic acts on RY p and ¢ : Ry j — RT/p

A (o, Tk)- module DA over R4 k is always the base change of a (¢, 'k )- module D7y over RY
for some r small enough: a finite projective R x-module D’ equipped with an isomorphism

©*Dy = RY /p K Qo ry . Dy =~ R /p Kk ®r7 o D’y and a commuting continuous semilinear action
of T'k. leen a (@,FK)—module DA over RQ&,K? we write D} = R} x @ry DQ,D[S T

R[ST Ry, « D Dai=Rak ®rr, . Dy for s < r. The (¢, I'k)-cohomologies H; ,YK(DA),i =
0, 17 2 for a (gp, I'k)-module is defined using Herr complex as in [KPX14, Def. 2.3.3] where vk is a
fixed topological generator of I'x modulo the torsion subgroup. And we write Hom,, -, (—, —) for
the Hom space of (¢, ' )-modules. We write R4 = Ra x, ¥ = VK, etc., if K = Q.

Let BérR, Bar = B;R[%] be Fontaine’s de Rham period rings, where ¢ is Fontaine’s 2.

For any r > 0, let m(r) be the minimal integer such that p™M = [K (upe) : Ko(ppe)r > 1
where K| is the maximal unramified subfield of K. The integer is taken so that there are injections
tm : RY = (L ®q, Kn)|[t] for m > m(r), see Appendix

For a continuous character § : K* — I'(X, Ox)* over a rigid space X, write Rx x(0) for the
corresponding rank one (p,I'k)-module over Rx i in [KPX14, Cons. 6.2.4]. If K = Q,, write
z: Q) = L* for the algebraic character of weight one. Recall that R (z) = tRr.

If G = GL,, over L for some n, we always take the Borel B the subgroup of upper-triangular
matrices and T the diagonal torus. We use the fraktur letter g (resp. b, resp. t) for the Lie algebra
of the group G (resp. B, resp. T'), also viewed as an affine scheme (or its analytification) over L.
Denote by Ad : G — End(g) the adjoint representation. For a Lie algebra g, denote by U(g) the
universal enveloping algebra and Z(g) the center of U(g). We write N C g for the nilpotent cone.

If X is a rigid space with x € X, we write k(z) for the residue field at x. For a (¢, 'k )-module
Dx over X, we write D, or Dy ,) for the base change to x. More generally for an affinoid algebra
A and an A-point Sp(A) — X, write Dy = Dx ®Rry Rk, and similarly D, = D' Ory . Rk
etc.

Let Cr denote the category of commutative local Artinian L-algebras with residue field L. If
A € Cyr, let my be its maximal ideal.

If Z is a commutative ring, I is a finitely generated ideal of Z and M is a Z-module, then write
M[Il={meM|zm=0,Vz €I} and M[I®]:=UX M[I']. If x: Z — A is a surjction of rings
with kernel I and M is an A-module, write M[Z = x] = M[I] and M{Z = x} = M[I*].

2. THE GROTHENDIECK-SPRINGER RESOLUTION

In this section, we recall the basics of the Grothendieck-Springer resolution. We only consider
schemes over L for the moment.

Let G be a split reductive group over L with a Borel subgroup B and a maximal torus 7. We
will write h = t for the Cartan subalgebra. We use P to denote standard parabolic subgroups



6 ZHIXIANG WU

containing B with the Lie algebra p. Write W (resp. Wp) for the Weyl group of G (resp. the Levi
of P).

2.1. Recollection on Grothendieck-Springer resolution. For a parabolic subgroup P O B
with the Levi subgroup M containing 7', consider the scheme

dp =G x"p = {(1,gP) € g x G/P | Ad(g™")v € p}
and the partial Grothendieck resolution
fp:gp =g, (v,gP) = v.
We will omit the subscript P when P = B, namely write f : § = gg — g. There is a natural map
gp = m//M ~h/Wp

sending (v, gP) to the projection of Ad(g~!)v € p to m. The map is compatible with fp in the
sense that it induces a map gp : gp — g Xyw b/ Wp.

Lemma 2.1. Let fp,gp be as above.

(1) The morphism fp is proper and surjective, finite over g*8 and is finite étale of degree
|W/Wp| over gre8~5. Here g"®8~%5 C g**8 C g denote open subschemes of reqular semisim-
ple elements and regular elements.

(2) The natural map ngh/wh/WP — RgpOf,, is an isomorphism. Moreover, the map g Xy w
h/Wp — g is finite flat of rank |W/Wp|.

Proof. (1) See for example [Wu21l, Lem. 2.3].
(2) The isomorphism is [BK15, Lem. 3.2]. The map h/Wp — §/W is flat by miracle flatness. O

We don’t really need the following lemma, but it might be helpful to keep it in mind.

Lemma 2.2. The dualizing sheaf of gp is trivial. And there is a canonical isomorphism fl!pf =
LfpF for any coherent Ogq-module F.

Proof. We follow the proof of [BK07, Lemma. 5.1.1]. Let 7p : gp — G/ P be the projection. The
canonical bundle wg, of gp is isomorphic to THwe /P R0y, Wrp where w,, denotes the relative
dualizing sheaf. We know wg, p = G x P §p where §p is the sum of all roots in the unipotent radical
u of p. Moreover, since gp = GxFp, wy, =G xpwp. Consider the fiberation 0 - u — p - m — 0.
Choosing coordinates m,u of m and u, then wp is generated by dm A du. Since wy, is trivial as a

M-representation, w, = —dp as a P-representation. Hence wg, ~ Og,.
We get fI!DOg = fl!gwg = Og,. The map fp: gp — g is perfect, hence f}g ~ Lf} by [Sta24l, Tag
0B6U,Tag 068D). O

2.2. Direct images of some line bundles. We need compute direct images of some line bundles
on g in the G = GLg case (Proposition . The computation will be the key for our main result
on direct images of (¢, I')-modules (Proposition [5.10).

Take g = gl, = Spec(L]a, b, ¢, z]) where a,b, ¢, z are coordinates for entries of matrices

a+z b
( c —a+ z) €e
Take b = Spec(Llh, 2]) for (z+h,z—h) € h. Recall the map g : g — gxy,w b where h/W = L[z, h?]
and O(h/W) — O(g) : h? — a® + be.

Lemma 2.3. The map f : g — g is a finite étale rank two cover over gre=* = g\ {a? + bc = 0}
and is finite flat of degree two over g™ = g\ {a = b = ¢ = 0}. The fiber of f over 0 € g is
identified with G/B and the fiber over a closed point x € N'\ {0} is ramified of degree 2 over the
residue field k(x).

Proof. By [BHS19, Prop. 2.1.1] or Lemma we know the corresponding preimage g'°¢ =" (resp.
g"°®) is finite étale (resp. finite) over g"°#~*° (resp. g*°®). Since f,Ogres = Ogxywh\{a=b=c=0}, W€
see g™ = (g xp/w h) \ {a = b= c = 0}. The fiber over z € N'\ {0} C g"#, which has image 0 in
h/W, is the fiber of h — h/W over 0 whose coordinate ring is k(z)[h]/h?. O


https://stacks.math.columbia.edu/tag/0B6U
https://stacks.math.columbia.edu/tag/0B6U
https://stacks.math.columbia.edu/tag/068D
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Let m : g — G/B. For k € Z, we write Og(k) for the line bundle 7*Og, (k) where our
convention is the standard one that Og,p(k) is ample for k > 1. Let V = Oge1 @ Ogez be the
universal trivialized rank two bundle on g. The operator v acts universally on V

v:xie; + xses — ((a+ 2)xy + bro)er + (cxy + (2 — a)xa)es

for z1,x2 € Og, hence also on f*V. By definition, v stabilizes the following short exact sequence
which gives the universal filtration on g pulled back from G/B (arising from the B-filtration of the
standard representation of GL3):

(2.1) 0— Oz(—1) = f*V — 0z(1) = 0.

Proposition 2.4. We writeld = O(g) = Lla, b, ¢, z] andU := O(g xp/w h) = U[h]/(h? = (a® +cb))
which is free of rank two over U.
(1) The sheaves Rf,Oz(—1) and Rf.Oz(1) concentrate in degree zero and are free of rank two
over U. _ _
(2) LetV .=V uU = f.f*V. The sequence of U-modules below

L ) GG (g

is exact. Moreover, the U-module Vv — (z + h)] := ker(V v ER) V) is free of rank two

overU and (v—(zxh))V=(w—-(2xh)V=V[v—(2Fh).

(3) The sequence of U-modules
0= f.05(=1) =V = f,05(1) =0
is evact and identifies f.Oz(—1) with Vv —(z+h)].

Proof. (1) The vanishing of higher direct images follows from the same proof for Oz in [BMRROS,
Prop. 3.4.1] which can be deduced from vanishing results for the Steinberg resolution case, cf.
[Bro93] or [BKO7, Thm. 5.2.1]. In detail, by the projection formula, Rr,O5(i) = (Rm.Of) R0, 5
Og/p(i). Consider the sequence of the bundles 0 — N =GxBn > g =~ GxBh = 0on
G/B where n is the nilpotent cone of b. This short exact sequence induces a filtration on m,0F
with the associated graded algebra isomorphic to O(h) ® Oz (see [Harl3l Ex. I1.5.16]). Since
O 57 (+£1) has vanishing higher cohomology, so is 7. Ogz(#£1). More directly, we can take an increasing
filtration by grading on Og with graded pieces the coherent sheaves G xB Sym"b* which are finite
extensions of (O(2i),4 > 0 and have vanishing higher cohomology even after twisting Og/p(—1).
Now we show that Rf,Og(£1) are free over g. The dualizing complexes of g and g are trivial by
Lemma and f is proper. Let Dgg(—) be the Grothendieck-Serre duality. We have Og(1) =
Das(Oz(—1))[—dimg] and hence Rf.Oz(1) = Das(Rf.Oz(—1))[—dimg]. Thus Rf.Oz(£1) are
maximal Cohen-Macaulay sheaves, hence locally free, on g (cf. [Sta24, Tag 0DWZ,Tag 090U]).
The (generic) rank is two by Lemma

(2) The composite (v—(h—z))o(v—(h+z)) = 0is due to h2 = a2+bcinU. A section x1e;+roey €
V., 21,2 € U is in the kernel of v— (h+z) if and only if (a— h)z1 +bxy = cx1 — (a+h)zz = 0. Using
that I is free over U with a basis 1, h, we write x; = y; +hz;, 2;,y; € U, 1 = 1,2. The last condition
is equivalent to y; = az; + bza, Yo = c21 — aze,ays — (a® +bc)z1 + by = cy1 — aya — (a® +bc)zg = 0
and to y; = az; + bza,ys = cz1 — aze. We see that there is a U-surjection V = U? — ]7[V —(h+
z)] & (z1,22) = ((a + h)z1 + bza)er + (cz1 — (@ — h)z2)es which is an isomorphism (for example
(a+ h)z1 + bzy = 0 implies that z; = 0). Hence the U-map v — (z — h) : V — V[v — (z + h)] is
surjective. The embedding V < V induces a surjection V — V/(v — (h + 2)) = V/(h — (v — 2)).
Then the map v — (z — h) : V/(v — (2 4+ h)) = V[v — (z + h)] is an isomorphism.

(3) We identify Oz(—1) C V with the subsheaf Oz(g.e1) where g € GL2(O(GLz)) denotes the
universal element. The map g — b sends (v, gB) to the image of Ad(g~!)vin h = {(h+ z,h — 2)}
via b — b. Hence h + z € O(h), pulled back to g, satisfies that v(g.e;) = g.(Ad(g " )v)e; =
(h + 2)(g.e1). Thus Og(—1) C f*V[v — (h + z)]. Taking direct images we get f.Ogz(—1) C
(fo*V)[v = (h + z)]. We claim that Oz(—1) = f*V[v — (h 4 z)] (when restricted to g*°®). Then
[:O05(—1) = V[v — (h + 2)] when restricted to gr# (Lemma, hence on whole g by [Sta24, Tag
0EBJ] and that V[v — (h + z)] is a vector bundle by (2). By G-equivariance, we may check the

. . . o~ _ (a+z b 1 .
identification on the open subspace U := gN ({v = ( c Cad Z>} X {<x 1> B}). Since


https://stacks.math.columbia.edu/tag/0DWZ
https://stacks.math.columbia.edu/tag/090U
https://stacks.math.columbia.edu/tag/0EBJ
https://stacks.math.columbia.edu/tag/0EBJ
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1y, [ a+br+z b
Ad(g™ )y = (c—2ax—b:c2 —a—br+z
r1e1+x2ez € f*V(U), 21,22 € Oz(U) is in the kernel of v — (h+ 2) if and only if (a — h)z; +bxy =
cry —(a+h)ry = 0 if and only if b(xs —221) = (2a+bx)(22 —2x1) = 0 in Og(U). The scheme U is
integral which implies that 3 —2x; = 0. Then z1e1 +x2e = x1(e1+ze2) = x1(g.€1) € Oz(—1)(U)
and we finished the proof. O

, we see h = a + bz and ¢ — 2az — baz? = 0. A section

Remark 2.5. Those rank two free sheaves in Proposition 2.4 on g are not flat over Ogx, 5. The
fibers of these sheaves at a = b = ¢ = z = 0 have dimension 2 but are not free of rank one over
L[h]/Rh?. For example, by the proof of (2) of the proposition, we know

[:05(—1) = 17[u —(h+2)] ~ (LN{xl @ijg)/((a — h)xy + bxa, cxy — (a + h)xa).

3. CHANGE OF WEIGHTS

We will construct (in the change of weights maps and prove the product formula for
the completions of the stack X, of (p,I')-modules of rank n > 1 along fixed Sen weights loci
(Proposition . In we describe a general construction for families of (¢, I')-modules
changing possibly non-fixed weights. Then we will study the flatness of the local model map in
the GL2(Q,) case in

We fix K a finite extension of Q, and assume ¥ = Hom(K, L) has size |K : Q,|. Take h =
(ho)oes = (ho1,++ shom)oes € (Z")¥ such that hyy < -+ < hoy forall 0. Let G =[], oy GLy 1
with the Weyl group W ~ (S,,)* where S, is the n-th symmetric group and with the Lie algebra g.
Let Py =[], ey Pn, be the standard parabolic subgroup of G containing [ ], B such that the Weyl
group Wp, of the Levi subgroup of P, is the stabilizer subgroup of h for the action of W = S on
(Z™)*. We write gy, for gp, and fn = fp, : §p, — g, the analytification of the map in

3.1. Stacks of almost de Rham (¢, T')-modules. We recall the setting in [EGH23| §5] and the
definition of various stacks.

Let Rig;, be the category of rigid analytic spaces over L equipped with the Tate-fpqc topology
defined in [CT09, §2.1]. By a stack we mean a category fibered in groupoids over Rig; satisfying
descent for the Tate-fpqc topology. Given a stack X over Rig; and Sp(A) € Rig;,, we write X(4) :=
X(Sp(A)) = Hom(Sp(A),X) for the groupoid lying over Sp(A) (cf. Yoneda lemma [Sta24l Tag
0GWI|Tag 02XY]). Sheaves with values in sets are viewed as stacks fibered in discrete categories.

Example 3.1. If Y € Rig;, then Y defines a sheaf over Rig; via Yoneda embedding by [Con06l
Cor. 4.2.5]. Let Z C Y € Rig;, be a Zariski-closed subspace and let Z be the coherent ideal sheaf.
We define a subsheaf Y C Y such that for any X € Rig;, Y"(X) is the set of morphisms X — Y
such that the image of X lies set-theoretically in Z. For n € N, let 2),, be the closed subspace of
Y cut out by Z". We get a directed system ---2),, <> 2,41 --- of sheaves over Rig;. Then Y is
equal to the sheaf colimit lim 9, for an affinoid Sp(A) € Rigy, we have Y"'(A) = lim Dn(A)
(cf. [Sta24, Tag 0738, Tag 0GXT,Tag 0AIX]).

For a (¢,I'x)-module Dy over Ry i for a finite extension L’ of L, the roots of the Sen
polynomial of Dy in (K ®q, L')[T] = [],cx L'[T] are Sen weights of Dy, see [KPX14, Def.
6.2.11]. The o-components of the roots for o € ¥ are called o-Sen weights.

Definition 3.2. (1) Let L’ be a finite extension of L, then a (¢, 'k)-module Dy, of rank
n over Rp/ i is said to be almost de Rham (resp. has Sen weights h) if all the Sen
weights are integers (resp. for all o € %, the multiset of o-Sen weights of Dy, is equal to
{ho717 o 7h0'7n}’-)

(2) Let X € Rig;. A (¢,T'kx)-module Dx of rank n over Rx k is said to be almost de Rham
(resp. almost de Rham of weight h) if for every point x € X, the specialization D, is
almost de Rham (resp. has Sen weights h).

If X = Sp(A), then a (¢, 'k )-module D 4 over R4  is almost de Rham of weight h if and only
if its Sen polynomial Pse, € (K ®q, A)[T] is equal to [], e [Ti; (T — ho,;) modulo the nilradical
of A.

Definition 3.3. Let (X,)} be the category fibered in groupoids over Rig; sending X € Rig;, to
the groupoid of almost de Rham (¢, ' )-modules over Rx x of weight h.


https://stacks.math.columbia.edu/tag/0GWI
https://stacks.math.columbia.edu/tag/0GWI
https://stacks.math.columbia.edu/tag/02XY
https://stacks.math.columbia.edu/tag/0738
https://stacks.math.columbia.edu/tag/0GXT
https://stacks.math.columbia.edu/tag/0AIX
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Definition 3.4. Assume that X € Rig;. Suppose that Dygr,x is a finite projective rank n
module over Ox ®q, K equipped with a decreasing filtration Fil§ = (Fily )iez by projective
Ox-submodules of Dpgr, x.-

(1) The filtration Fil% is said to be of type h if for any o € X, the filtration Fily , :=
Fﬂ;( ®OX®QPK71®U Ox of Dde,X,o = Dde,X ®OX®Q,, K,1®0 Ox satisfies that for all 7 € Z,
Fil;(fg/Fil;(fjl is projective over Ox of rank the multiplicity of ¢ in {ho1, -+ ,hon}-

(2) Let gn/G be the category fibered in groupoids over Rig; sending X € Rig; to the groupoid
of triples (Dpar.x,Vx, Filk) where Dyar x is a projective Ox ®q, K-module of rank n,
vx is an Ox ®q, K-linear endomorphism of Dpqr,x and Fil% is a filtration of Dpgr,x by
projective sub-O x-modules of type h stabilized by v.

(3) Let gn be the category fibered in groupoids over Rig; sending X € Rig; to the groupoid
of (Dde,X,Vx,Fﬂ;(,OéX) where (Ddeﬁx,Vx,Fﬂ;() S (Eh/G)(X) and ax : Dde,X ~
(Ox ®q, K)" is an isomorphism of Ox ®q, K-modules.

Lemma 3.5. The categories fibered in groupoids (X,,)p and gn/G in Deﬁnitz’on and define
stacks on Rigy .

Proof. We need to verify that (X,,)f, and gn/G satisfy descent for Tate-fpqc coverings. The descents
for (¢, 'k )-modules and (Dpar, x, Vx, Fily) are effective by descents of vector bundles (cf. [Con06,
Thm. 4.2.8]). The properties of being of weight/type h, etc., can be checked pointwisely and thus
descend. |

If h = 0, the information on filtrations is trivial and in this case, we write g/G for gn/G. Let
fn 1 9n/G — g/G be the natural morphism of stacks forgetting the filtrations.

Lemma 3.6. The stack gy is represented by the rigid analytic space gn. The following diagram of
stacks

gh — On/G

s
g ——9/G

is Cartesian.

Proof. A filtration Fil;(,g of type h of Dpgr,x,c =~ Ox on X € Rig; is determined by the flags
Fil "o > ... D Fil™" for ¢ € ¥. With isomorphisms Dyar, x,» =~ O%, one sees by definition
that such flags are parametrized by the flag varieties GL,,/Pyn,. An endomorphism vx , of O% is
equivalent to a map X — gl,, and the map X — gl,, x GL,,/ P, factors through gff; Ph, if and only
if vx , stabilizes the filtration. The diagram is Cartesian by definitions. |

3.2. A product formula. We recall the local model maps and will define the change of weights
maps in Proposition [3.12] We will freely use constructions and results on families of almost de
Rham (p, 'k )-modules in Appendix

Suppose Sp(A) € Rig;, and D4 € (X,)(A). Apply Proposition [A.6]for the I x-representations
localized from D4 in §A7T] we obtain functorially a triple

(Dpar(Da),va, Fil* Dyar(Da)) € (gn/G)(A).

Such construction glues along admissible Tate coverings and is functorial for the base change, hence
we get the following statement, which already appeared in [EGH23| §5.3.22].

Proposition 3.7. The functor Dpar : Dx — (Dpar(Dx),vx,Fil*Dpar(Dx)) induces a (local
model) morphism Dpar : (X,)fy — 0n/G of stacks over Rig; .

Remark 3.8. The map Dpqgr factors through the substack (gn/G){} where all vx are required to
be locally nilpotent in the sense of Lemma [3.9] below.

Lemma 3.9. We consider nilpotent operators.

(1) Let A be a commutative Noetherian ring with the nilradical I. Let v € M, (A) be an n-by-n
matriz. Then v is nilpotent if and only if its image in M, (A/I) satisfies that v™ = 0. And
in this case, there is an integer N depending on A,n such that v =0 in M, (A).
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(2) Let X € Rig;, and let v € Endp, (O%). Then v is locally nilpotent (v is nilpotent when
restricted to any affinoid open Sp(A) C X ) if and only if for any x € X, the image of v in
Endy, ) (k(2)") = M, (k(x)) is nilpotent.

Proof. (1) Suppose that v™ € M, (I). Since I is nilpotent, we see that there exists an integer N
such that IV = 0. Then ™V = (v")¥ = 0. Conversely, suppose that v is nilpotent. We may
assume that A is reduced. For any prime ideal p of A, the image of v in M,,(A/p) C M, (Frac(A/p))
is nilpotent. Hence v =0 mod p for all prime ideal p of A. This implies that v™ = 0.

(2) Suppose that v is pointwisely nilpotent. We prove that v is locally nilpotent. The problem
is local and we may assume X = Sp(A) is an affinoid. Let I be the nilradical of A. Then the image
of v™ in M,,(A/I) is zero since it is true pointwisely. By (1), v is nilpotent. O

The following lemma allows change of weights and is just the family version of [Din24l Lem.
2.1]. See for a more direct construction.
Lemma 3.10. Let Sp(A) € Rig; and Da € (X,)p(A). There exists a unique (¢, T k)-module
fm(Da) € (X,)0(A) almost de Rham of weight 0 such that fn(Da) is a sub-(p,Ti)-module of
Dal3] and fu(Da)[3] = Da[1]. Moreover, the formation Dy — fu(Da) is functorial and com-
mutes with base change.
Proof. By definition, there exists » > 0 such that D4 = R4k OR7 D7, for a (¢,T'k)-module
DY over Ry j. We assume that m(r) is large enough in the sense of Definition We construct
fu(D}) firstly and will let fu(Da) = Ra,x ®ry, . fu(D}). By Proposition the (p,T'k)-
modules inside D% [1] which equal D’ [}] after inverting ¢ is in bijection with I'g-invariant (4 ®q,
K,,)[[t]]-lattices in D3 (D) for m = m(r). By (1) of Proposition and also the Step 1 of
its proof, there exists a I'y-invariant lattice inside D7J% (D7) of weight O corresponding to the
filtrations Fil® of type 0 of Dyqr(Da), which can only be the trivial filtration:

Fil' = Dpar(Da) D Fil' = {0}.
Thus there exists a sub (¢,x)-module f,(D’;) of rank n inside D’[1] of weight 0 such that

fu(DR)[4] = D7[3]. To show the uniqueness, suppose that A, A’ C D[] are two required
(¢, Tk )-submodules of weight 0. Then we obtain a map in

1 . i
Homy, (Ag, A;&[E]) = @HomwavK (Aa,t A;l) = Homy, (Aa, AIA)
i>0
The last equality follows from that H) , (t7'AY% @r, . AY/tTTHAY @r, o AY)) = 0 for all
i > 1 by Lemma below since A% ® A’; has weight 0. Hence the identity Aa[}] = A/[1] is
induced by a map Ay — A’, which is necessarily an inclusion. We conclude that A4 = A’y. The

functoriality follows from the functorialities of the constructions in Appendix [A]or the uniqueness
of fu(D.a). O

Lemma 3.11. Suppose that D4 is a (¢, Ti)-module over Ra i for an affinoid algebra A over L
and is almost de Rham of weight 0. Then HQ  (t'Da/t" ™' D4) =0 for all i # 0.

Proof. We know t'D4 has weights all equal to i. Suppose that Dy = Rax ®r, . D} for
some (¢, g)-module over R’ x and r > 0. Then t'Dy/t""'Dy = lim tipr /Dy =
@T,ZT HmZm(w) DZt (D), cf. Appendix and [Liul5l _Prop. 2.15]. Taking (p-invariants we
have (£D4/tH1D4)¢=! = DX (£D4) = Ko ®k,, DI (D 4) (cf. [KPX14, Prop. 3.2.4, Def.
6.2.11]). By definition H) _ (t*'Da/t""'Dy) C D, (' D4)"*=". The differential of the I'-action
gives the Sen operator Vge,. Since the Sen weights of t*D 4 are pointwisely i # 0, Vgen — @ acts
locally nilpotently on D (D4). One gets that D (£*D )%=t C D (t'D4)Vsen=0 = 0. O

Sen

Glueing the construction in Lemma [3.10] we get a map
fo o (Xn)n = (Xn)g

and a commutative diagram of stacks over Rig;

Dpan ~ ~
(X)h =5 9n/G «— On

lfh th lfh

(Xn)) 2 g/G g
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where all squares are Cartesian by the following proposition.

Proposition 3.12. The functor U = (fn, Dpar) induces an equivalence
v (%n)ﬁ ~ (xn)é\ Xg/G’ ﬁh/G
of stacks over Rig; .

Proof. The 2-fiber product (X)) Xg/¢ 9n/G is a stack [Sta24, Tag 026G| and for an affinoid
Sp(A) € Rigy, the groupoid ((X,)) Xg/¢ 0n/G)(A) is the category of tuples

(A4, Dpar,a,va, Fil* Dypar A, @a)

where A4 is a (¢, 'k )-module of rank n over R4 k almost de Rham of weight 0, a triple
(Dpar,a,va,Fil*Dpar, a) € gn/G(A)

and a4 : Dpar,a =~ Dpar(Aa) is an isomorphism of A ®g, K-modules compatible with the nilpo-
tent operators. Suppose that g1, g2 € Isom(Da, D) for D, D’y € (X,,)p. If U(g1) = ¥(g2), then
g1 =92 : Dal}] = fu(Da)[3] = DL[3] = fu(D})[]. Since Dy is t-torsion free, we see g1 = go.
Now suppose ¢ is an isomorphism (fn(D4a),Fil*Dpar(Da),aa) =~ (fu(D'y),Fil*Dyar (D)), oy)
where a4,a’y are the natural identifications, e.g., Dpar(Da) = Dpar(Da[$]) = Dpar(fu(Da)).
By [KPX14] Lem. 2.2.9], the morphism g : fu(Da) — fu(D’4) is induced by some map fn(D4)" —
n(D’)" uniquely determined by fn(Da) and fn(D’y) for some r > 0 such that m(r) is large
enough. By the uniqueness in the proof of Lemma [3.10) fu(Da)” = fu(D%) and fn(D))" =
/m((D})"). Then Proposition and Proposition implies that there exists ¢’ : D7) ~
(D’y)" which induces g. This shows that U is fully faithful by [Sta24] Tag 04WQ]|. Also given
(A4, Dpar,a;va, Fi1* Dpar,a, @a), the triple (Dpdr,a, va, Fil* Dpar,4) and a4 define a lattice Dgilf’Jr
of D7(A4) by Proposition [A.6]for m = m(r) if A4 is the base change from a (¢, T'x)-module over
R’y k for some r such that m(r) is large enough, which gives a modification D4 of A4 by Propo-
sition This shows that the tuple lies in the essential image of W 4. Then W is an equivalence
by [Sta24l |Tag 046N]. O

Corollary 3.13. The map fu : (X,)p — (X,){ is projective, i.e., for any Sp(A) € Rig; with
Sp(A) — (X,)4, the fiber product f, *(Sp(A)) := Sp(A) Xz, (Xn) is isomorphic to a rigid
analytic space projective over Sp(A).

Proof. By Proposition Sp(A) Xz, (Xn)n = SP(A) Xg/¢ 0n/G. Let (Dpar,a,va) be the
universal A ®g, K-module over A induced from Sp(4) — g/G. Then f, ' (Sp(A)) is the stack
over Rig; /Sp(A) of v4-stable filtrations on Dpqr, 4 of type h. This stack is representable by the
representability of Grassmannians and that being v 4-stable is a Zariski-closed condition (essentially
given by vanishing of matrix coefficients for morphisms between vector bundles). O

Remark 3.14. Locally, we can choose a trivialization Dpqr,a =~ (A ®q, K)" in the above proof,
equivalently choose a section Sp(A) — g for Sp(A) — g/G. The map Sp(A) — g is defined by v4
with the set-theoretical image contained in the nilpotent cone N, and f{l(Sp(A)) = Sp(A) Xg gh.

3.3. Change of weights for general families. We point out that change of weights for (p, ' )-
modules may work for more general families, without pointwisely fixed Sen weights. Let D4 be
a (¢, T'rx)-module over R4 x for an affinoid Sp(A) € Rig;. We fix ¢ € ¥ and write Psen(T') €
(A®q, K)[T] for the Sen polynomial of D 4, and Psen o (T') for its o-component via A®q, K ~ [ A.
We will call Psep o (T) the o-Sen polynomial in the following.

Lemma 3.15. Two polynomials Q(T) and S(T') in A[T] are coprime to each other (Q(T),S(T)) =
(1)) if and only if for any x € Sp(A), the sets of roots of Q(T) ®a k(x) and of S(T) ®a4 k(x) in

k(x) have empty intersection.

Proof. The condition that (Q(T),S(T)) = (1) is equivalent to that there is no maximal ideal m of
A[T] containing both S(T') and P(T). Any maximal ideal m of A[T] lies over a point = € Sp(A)
[Sta24] |Tag 00GB]. The result follows. O

Proposition 3.16. Suppose that the o-Sen polynomial Psen (1) of Da admits a decomposition
Pseno(T) = Q(T)S(T) in A[T] by monic polynomials such that (Q(T),S(T)) = (1). Then there
exists a unique (p,I'k)-module D'y over Ra contained in Da and containing tD 4 such that the
Sen polynomial of D', is equal to Q(T —1)S(T) HU,#I Psen,o(T) € [, ex AT


https://stacks.math.columbia.edu/tag/026G
https://stacks.math.columbia.edu/tag/04WQ
https://stacks.math.columbia.edu/tag/046N
https://stacks.math.columbia.edu/tag/00GB
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Proof. We suppose that Dy = D)y ®gr, , Ra,k for a (¢, 'k )-module D7 over R’y k- By Proposi-

tion it is enough to prove the following statement for a semilinear I' x-representation Dg”;g:;ﬁ

over (A ®q k Ky,)[[t]]: suppose that the characteristic polynomial for the Sen operator V = Vgen
on Dfﬂg;yg/t is equal t0 Psen o (T) = Q(T)S(T) such that (Q(T),S(T)) = (1), then there exists a
unique sub-I"g-representation M contained in D:ﬂf’,tha and containing th}fz,o such that the Sen
polynomial of M/t is equal to Q(T' — 1)S(T). /

Since (Q(T),S(T)) = 1, AlT]/Pseno(T) = (A[T])/Q(T)) x (A[T]/S(T)) by the Chinese re-
mainder theorem. As Psep (V) annihilates Dg}f’,tx,a /t, this leads to a canonical decomposition
Dgilé,tx,a/t = Mg ® Mg where Q(V) kills Mg and S(V) is invertible on M. Since the actions of
I'k, A and K,, commute with V, Mg and Mg are I'-stable projective A ®¢, g K,,-modules.

We claim that Mg is projective over A ®, i K, of rank deg(Q)) with characteristic polynomial
of V equaling to Q(T"). We can check the rank at points Sp(L’) — Spec(A) for a finite extension
L’ over L and reduce to the case when A = L’ such that Homg (K,,, L") = [K,, : K|. Then
Dg?f:z’,a/t = HU’EHomK(K,n,L’) Dénén,L’,o” where Dgén,l/,o" = Dgén,L’ ®L'®0,KKm71®U' L'. And 'k
permutes and induces V-equivariant isomorphisms between different o’-factors. We have decom-
positions D&, 1/ o = Mo g © My s for all o'. Up to enlarging L', the decomposition refines to
a decomposition by generalized eigenspaces for V whose dimensions are given by multiplicities of
roots of Psen,. Then we see the rank over L' of each M, ¢ is equal to the degree of @ (and
with the characteristic polynomial of V equaling Q(7")). Hence Mg = ][], My ¢ is projective
over L' ®, x K,, with the expected rank. Return to general A, let Q'(T),S’(T) be the char-
acteristic polynomials of V on Mg, Ms. Then Q'(T7)S'(T) = Q(S)S(T) and (Q'(T),S(T)) =
(Q(T),S'(T)) = (Q'(T),5(T)) = 1 by Lemma [3.15] We conclude that A[T]/Q'(T) = A[T]/Q(T),
hence Q'(T) = Q(T') since both are monic polynomials of the same degree.

We take M := ker(Dg?gtLLU — Dggg_g/t — Mg). There is a I'g-filtration of (A ®, x Ky,)|[t]]-
submodules /

D, CtM C Dy,  Cc M Cc DR,
with graded pieces tMg,tMq, Mg, Mg. Then M/tM admits a I'k-filtration with graded pieces
tMg and Mg. Since V(tz) = ¢(V + 1)z for z € Mg, the characteristic polynomial of V on M /tM
is Q(T'—1)S(T). And M is finite projective over (A ®, x K,)[[t]] by Lemma below. The
uniqueness comes from the uniqueness of the decomposition M = Mg ®© Ms. O

Lemma 3.17. Let B be a Noetherian ring. Let M be a submodule of a finite projective B[t]]-
module D containing t*D such that D/M s finite flat over B[[t]]/t*. Then M is a finite projective
B([t]]-module of the same rank as D.

Proof. Certainly M is finite over BJ[[t]]. Use the sequence 0 - M — D — D/M — 0 and that D
is flat over B([[t]], we have Torf[[t”(—, M) = Tori[[lt]](—7 D/M) for i > 1. For any B][[t]]-module N,
there is a spectral sequence [Sta24, Tag 061Y]

Tor B/ (Tor BUN(N, B[] /¢%), D/M) = Tor?M (N, D /M),

n+m

The flatness of D/M over BJ[[t]]/t* implies that Torf[[t]]/tk (TorBM (N, B[[t]] /), D/M) = 0 for
n > 1. Thus the spectral sequence degenerates at the Fs-page and

Tor 1 (—, D/M) = Tor? VY (—, BI[1]] /%) @ gy D/M

for all i > 0. Since B[[t]]/t* admits a flat resolution 0 — t*B[[t]] — B[[t]] — BI[[t]]/t* — 0,
Torf[[t”(—,B[[t]]/tk) =0 for all ¢+ > 2. Hence Torf[[t”(—,M) = 0 for all 4 > 1. This implies that
M is a finite flat B][t]]-module. O

Example 3.18. Suppose that D has weights h € (Z")* as in Lemma Pick 0 € ¥ and
assume that {hy1, - ,hon}t = {—k1,---,—ks} as sets where —k; < --- < —k, and each —Fk;
appears m; times in h,. Let I be the nilradical of A. Then Psen(T) = [ (T + k;)™ mod I.
By Hensel’s lemma [Sta24] Tag 0ALI], there exist coprime monic polynomials Q(7'), S(T') such that
Psen o (T) = Q(T)S(T) and Q(T) = (T + k1)™ mod I. The above proposition gives a (¢,I'x)-
module D'y C D 4 such that D;[1] = Da[}] of o-weights hg,14+1 =+ = ho o +1 < homy41 < -+ -
Repeating such procedures for all o and multiplying suitable powers of ¢, we can find in the end
D', such that D’y = fu(D,) is almost de Rham of weight 0 and D’,[}] = D4[1].


https://stacks.math.columbia.edu/tag/061Y
https://stacks.math.columbia.edu/tag/0ALI
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3.4. Flatness of the local model map. We prove that the local model map Dyar : (X,)0 — ¢/G
is flat in the sense of Corollary and in the case n = 2, K = Q,. This part is to explain
Hypothesis that will appear in our main theorem (Theorem and also Proposition .
From now on we assume n = 2 and K = Q,. The major tool will be miracle flatness. Most
proofs in this section work for more general situations, except for the very last part of the proof of
Proposition [3:25

We will define and study flatness via morphisms between complete local rings. We first recall
the definition of versal rings of stacks assuming existence.

Definition 3.19. Let X be a stack over Rig; with a morphism z : Sp(L’) — X where L’ is a finite
extension of L. Then z corresponds to an object in X(L') denoted by Dy, .
(1) We define Fx , to be the groupoid fibered in Cr. sending A’ € Cps to pairs (Dy €
X(A),tar s Dy @4 L' ~ D) where we write Dy ® 4 L’ for the pullback of Dy in X
along Sp(A//mA/) — Sp(A/) A InOI"phiSHl (A/,DA/,LA/) — (A",DA//,LA//) in -7:%,90 is a
map A’ — A" in Cp/ together with an isomorphism Dy, ® o+ A” ~ D4 compatible with
tar and g, cf. [Sta24, Tag 07XD].
(2) A formal object of X is a complete Noetherian local ring (R, mg) with L’ = R/mpg finite over
L and objects Dg/my € X(R/m'%) together with isomorphisms DR/wmn @pjmn, R/m’j{l ~
DR/m;L{l for all n [Sta24l Tag 07X3]. This formal object is versal at the map = : Sp(L') — X
corresponding to Dp/m, € D(L') if the induced map Spf(R) — Fx , is formally smooth.
In this case we say R a versal ring of X at x.

Remark 3.20. Let A’ be an Artin local L-algebra with residue field L’ finite over L, then A’ is an
L’-algebra in a unique way such that L' — A" — A’/m4, = L' is the identity map (i.e., A’ € Cr/)
since L' is formally étale over L [Sta24l Tag 04G3]. If A is an affinoid algebra and m is a maximal
ideal of A with residue field L', then the completion Xm is an L’-algebra and is a versal ring of A at
the point 2 : Sp(L’) — Sp(A) pro-representing Fgy(4),,- If L” is a finite extension of L’ and we let
x" : Sp(L") — Sp(L') — Sp(A), then Fg,(a) . is pro-represented by the base change Ap @1/ L.
Furthermore, if 9" is the completion of §) = Sp(A) with respect to an ideal I C A in the way of
Example with an L'-point  : Sp(L') — 21 — D", then by definition Fy , = Fy~ , are both
pro-represented by Ay = /T,g

We choose an L-point 2 € (X2)) (L) C X2(L) with Sen weights (0,0) corresponding to a (¢, T")-
module over Ry. Let Xp, = Fx,  be the deformation problem over C;, sending A € Cy, to the
groupoid of pairs (Da,ta) where Dy is a (¢,I')-module over R4 and t4 : Da/my ~ Dp. Let
Tpar = Dpar(Dr) be the image of x in (g/G)(L) given by (Dpar(Dr),vr) and write X, . be
the deformation problem of (Dpar(Dr),vr) over Cr, [BHS19, §3.1].

Proposition 3.21. If Dy, is not a twist by a character of an extension of t /'Ry (€) by Ry (written
as [Rp —t7'"Rp(€)]), then Dyar : Xp, — Xa,up is formally smooth.

Proof. To show formally smoothness, we need to show that for any surjction A — A = A’/I
in Cr, such that ma/I = 0, any deformation (Da,¢) of Dy, and deformation (Dpar, a’,var) with
an isomorphism (Dpqgr,a’,var) ®ar A =~ (Dpar(Da),va), there exists (Das,tar) € Xp, (A") such
that there exists an isomorphism Dpgr(Das) =~ Dpdr,a compatible with v4 and induces the
corresponding isomorphism modulo 7, see [Sta24l Tag 06HF).

It’s more convenient for us to use the language of B-pairs: the equivalence between (¢,T')-
modules and B-pairs [Ber08a| and the equivalence between X, .. and deformations of almost de
Rham Bggr-representations [BHS19, Lem. 3.1.4]. We follow the proof and notation of [Nak14!
Prop. 2.30]. Write W = (W, Wig) = (We(Dp),Wii(Dr)) and Wy = (W@A,WJR’A) =
(We(Da),Wix(Da)). Write End(W) = WY ® W where the tensor is in the category of B-
pairs. Choose basis of W, 4 and WJR,A' Then Wy gives us 1-cocycles p. : Gg, — GL2(B. ®q, A4),
par : Gg, — GLa2(Bji®q, A) and a matrix P € GLa(Bqr ®g, 4) such that Pp.(g)g(P)~' = par(g)
for any g € Gg,. Choose an L-linear section s : A — A’ of A" — A which gives us lifts
Pe = SO P, PdR = S © pgr and P. These elements defines 2-cocyles. For example, cﬁR S
I®r Z2(ngvEHdB§R®QpL(W;R)) is defined such that (use EndBIRe@@pA'(W;R,A @4 A)@a I =

ey EndBIR®QpL (Wir))

cir(91,92) = Par(9192)91 (Par(g2)) ' Par(g1) " — 1,Yg1,92 € Go, -


https://stacks.math.columbia.edu/tag/07XD
https://stacks.math.columbia.edu/tag/07X3
https://stacks.math.columbia.edu/tag/04G3
https://stacks.math.columbia.edu/tag/06HF
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The vanishing of H?*(Gg,, End(W)) (Lemma below) implies that in the class of (e, pag, P)
there exists always a lift (pe ar, par,a’, Pas) which defines a B-pair Wy = (WE,A"WJR,A’) over
A’ deforming W4. Moreover, standard arguments show that the set of deformations is an affine
space under I @1, H*(Gg, , End(W)) (see the proof of [Nak14l Lem. 2.28]). For example, another
lift pir 4+ of par defines a 1-cocycle in I @, Z*(Gg, , EndBjR@)QpL(WJR)):

cir(9) = Plr.a(9)par,ar(9) ™" = 1,¥g € Go,.

Now we consider lifts of Wyr, 4 to Wqr, 4/. An easier argument shows that the set of deformations
is parametrized by I ®p Hl(ng,EndBdRQ@QpL(WdR)). The map between lifts induced by Dpar
corresponds to the natural map I @ H'(Gg,,End(W)) — I ® Hl(QQP,EndBdR®QpL(WdR)).
We conclude that the existence of deformations to A" of W4 with given image under Dpggr is
equivalent to that the map H'(Gg,,End(W)) — H' (Gg, Endp,neq, L(War)) between tangent
spaces is surjective (cf. [Sta24] Tag 0E3R]).

To see when H'(Gg,,End(W)) — H'(Gg,, War) is surjective, we go back to the language of
(¢, T)-modules (we can also use B-quotients as in [Ked09]). Consider the long exact sequence (see

Lemma below)
-+ — H_(Endg,(Dr)) — H,_(Endg, (DL)/tEndg, (DL)) — H (tEndg, (DL)) — 0.

Using Lemma below, the map H} r(Endg,(Dr)) — H'(Gy,, War(Endg, (Dr))) is sur-
jective if and only if H? (tEndg,(Dz)) = 0. By local Tate duality, HZ (tEndg,(DL))" =
ng(t_lEndRL (Dr)Y(e)) = Hgﬁ(t_lDL ®r,, D} (€)) which is non zero if and only if there exists
a non-zero morphism f : Dy — Dr(ez~!) of (¢,T')-modules. Let f # 0 be such a map. The
kernel and image of f are (p,T')-modules [Ber08a, Prop. 1.1.1]. If Dy is irreducible, then we get
an injection Dy < Dy (ez~!) which must be an isomorphism as both modules have weights zero
(cf. Lemma . This is not possible considering ¢-slopes (as ez~ 1(p) = p~!). Hence we may
suppose that Dy, is split trianguline, namely there exist smooth characters 41,02 : Q) — L* and
a short exact sequence of (¢, I')-modules

0— RL(51) — DL — RL(ég) — 0.
We may also suppose that R, (d1) is the rank one kernel of f. Then we get an injection R, (d) <
Dr(ez™"). Hence d1ez™! = &y since Homy, o (RL(6),RL(6")) = H)_ (RL(6'671)) # 0 for two
smooth characters ¢, if and only if § = ¢’. Then under the assumption that Dy is not of this
form, Dpqr is formally smooth at Dy. ([l

Remark 3.22. In the case that Dpqr is not smooth at Dy, f{l(DL) may contain non-smooth
points, see Lemma [3.24] below.

Lemma 3.23. Suppose that Dyr, is a (p,T')-module of Hodge-Tate-Sen weights all 0. Then the

map H),_(Dr) = H'(Gy,, War(Dy1)) factors through H, .(Dr,/tD1) and induces an isomorphism

H. _(Dp/tDy) ~ H (Gy,, Wiz(DL)).

Proof. Since Wi (Dy) has weights 0, the map H'(Gx, Wir(Dr)) — H*(Gg,, War(Dy)) is an

isomorphism. Moreover H'(Gg,, tWz (D)) = 0is 0 (cf. [Nak14) Cor. 5.6]). We get isomorphisms
H'(Gg,, War(Dr)) = H'(Go,, Wir(D1)) = H' (Ja,, Wir(Dr)/1).

There is a factorization H), (D) = H*(Gg,, Wir(Dr)) = H'(Gg,, War(DL)), see [Nak09, §2.1].
The cohomology of Dy, and tDy, can be computed as Gg,-cohomology of complexes in the first two
columns of the following short exact sequence of complexes of Gg, -modules (see loc. cit.):

W (tDp) © Wi (tD1) —— Wo(Dy) @ Wi (Dy) —— Wik (Dy)/t

| | |

War (tDy,) War(Dp) ———— 0.

By comparing the long exact sequence for the cohomology of 0 — tD;, — Dy, — Dy, /tDy, — 0 and
using five lemma, we see HY, (Dr/t) ~ H'(Gg,, Wi (Dy)/t) for i = 0, 1. O

Lemma 3.24. If Dy has Hodge-Tate weights all 0, then HZ_(Endg, (D)) = 0 and Xp, is
formally smooth.


https://stacks.math.columbia.edu/tag/0E3R
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Proof. By the local Tate duality,
H?_(Endg,(DL)) = H) (D} ®r, Dr)"(€))" = Hom,, (R, D1, ®r, DY (€))".

Suppose that there is a non-zero map g : R, — Dy, ®g, DY (€), which must be an injection and
induces B — Wik (D ®r, DY (€)). However, all Hodge-Tate-Sen weights of the (¢, I')-module
Dy, ®r, D] (e) are equal to 1,

H°(Gg,, Wi (DL ©r, D(e))) = Fil’Dar (D1 ®r, DY(€)) = 0.
Hence H$77(EndRL (D)) = 0. The formally smooth statement is [Chelll, Prop. 3.6]. d

We choose a trivialization oy, : Dpar (D) =~ L? and let Xw':'de be the completion of g at the
corresponding matrix vy, € g. Let XEL = Xp, XXsan XEPdR, defined in [BHS19, §3.5]. Below, for
a groupoid X fibered over Cr,, write |X| for the corresponding functor taking isomorphism classes.

Proposition 3.25. The morphism Xp, — X 1s relatively representable and is flat for all Dy,

in the sense of maps between versal rings.

Proof. Let My = Dy [}] and let X, be the groupoid of deformations of M, in [BHS19, §3.3]. By
[BHST9, Lem. 3.5.3], the map X, — Xa,.n is relatively representable. Let W = (W,, W) :=
(We(DL), Wi (Dr)) be the B-pair of Dy. We only need to show that the map Xp, ~ Xw, Xx,,
XWJR — Xm, ~ Xw, is relatively representable (we used [BHS19, Prop. 3.5.1]). We reduce to

TpdR

show that XWIR — Xw,y is relatively representable. This is true and in our case XW:R ~ Xwir

when W has Hodge-Tate weight 0 (see Lemma or [Wu2ll, Prop. 3.1]). Note that we get
XDL ~ XW€~

We may suppose that the map X EL = Spf (R%L) — XJE') = opf (SH) is induced by a continuous
local morphism S™ — R%L of complete Noetherian local rings. We prove that this map is flat. By
Proposition this map is formally smooth, hence flat, if Dy, is not an extension of t 1Ry, (ed)
by R (6) for a character ¢ of Q. Otherwise, by miracle flatness [Sta24, Tag 00R3| and Lemma
it’s enough to show that the fiber R%L /mgn has codimension dim SY = 4 in R%L.

We first calculate the dimension of R%L. Let A = L[e] = Lle]/e?. The fibers of |XE'L|(A) —
|Xp, (A)| over given (Da,ta) € | Xp, (A)| are isomorphisms a g : Dpar(Da) ~ A? parametrized by
Endy (L?). Two deformations given by a4,y are equivalent (give the same object in |X%'L |(4)) if
and only if there exists an isomorphism W, 4 ~ W, 4 (in bijection with H°(Gg,, Endp, g, L(We)))
inducing (a/)~'a. The dimension of |Xp, (A)| is the dimension of H'(Gg,, Endp,g,,(We)). The
composite

H°(Gy,,Endp, g, 1(We)) = H'(Gg,, Endp, e, L (War))
~ Endgep, (@) (Dpar(War)) < Endz(Dpar (War))

is injective. Hence
dimy, X7, (A) = dimy H'(Gg,, Endp, e, L(We)) + 4 — dimy, H(Gg,, Endp,e,, £(We)) = 8

by Euler characteristic formula and vanishing of H? (Lemma .

If D = Rp ® Rr(t"te), v = 0, the quotient RD/mSD pro-represents the functor sending
A € Cy, to the groupoid of (D4, ta,aa) where ag : Dpar(Da) >~ A™ and D4 is de Rham. Since
Dy, is semi-stable, all its de Rham deformations are semi-stable by [Ber02, Thm. 0.9] and we have
Dpar(D4) = Dg(D4) for such deformations. By the equivalence in [Ber0O8b], the category of semi-
stable (¢, T')-modules of Hodge-Tate weights (0,0) is equivalent to the category of (¢, N)-modules
of rank 2. Hence the de Rham locus is the deformation space of matrices (¢, N) € GLs X g such
that N¢ = ppN. This space has dimension 4 by [Hel23, Prop. 2.1].

If Dy, is a non-split extension of t7'R(e) by Ry, then End, (D) = L and the sheaf
|Xp,| is pro-represented by a deformation ring Rp, of dimension dimy H} (Endz,(Dr)) = 5
[Chelll, Prop. 3.4] (even though Xp, is not equivalent to | Xp, |). The fiber product X5 =

Dr,vr
Spf(R%L) X $pf(sD) Spf(SD/mSD) pro-represents the groupoid fibered over Cy, sending A € Cy, to
the groupoid of (D4, ta,aa) where aq : Dpar(Da) ~ A" such that v4 = v; under the trivial-
ization a 4. Let Xp, o be the groupoid sending A to (D4, ta) € Xp, (A) such that coefficients of
Sen polynomials (given by tr(r4) and det(v4)) of D4 vanish. Then |Xp, ol is pro-represented by

a quotient Rp, o of Rp,. Consider the map |X5'L7VL| — |Xp, 0l This map is formally smooth


https://stacks.math.columbia.edu/tag/00R3
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and of relative dimension 1 by Lemma below. Thus dimp, R%LWL = dimz Rp, 0o + 1. We
show that dimy, Rp, o = 3, or has codimension 2 in Rp,. Let Xf;;e be the deformation problem
parametrizing deformations of Dy, with fixed determinant z=1e (or R(z71€)). Then |XZD_LlE| is
pro-represented by a complete Noetherian local ring RZD_;C. Let Rz, be the dimension 2 universal

deformation ring of the trivial rank one (p,I')-module. We have Rp, = R;,’;e@ LR®r, (see Lemma
below). Since fixed weight deformation of the trivial character has dimension one, it’s enough
to show that the fixed determinant deformation ring is flat over L[[h]] where h is sent to the ele-

ment in RZD_L16 given by the trace of the universal nilpotent operator v. By Krull’s principal ideal
theorem, a minimal prime of R},_Llﬁ containing h has either height one or height zero. If all mini-
‘“/h=dimR; —1=2as desired. If the

L

mal primes containing h has height one, then dim R7,

€

_ . .. . . = .
minimal prime containing h has height zero, since Rp € is integral (even regular, as is for Rp, ),

we see h =0 in Rg;e. This is not possible since we can construct trianguline deformations of the
form Dy = [Ra(63") —t 'R 4(d 4¢)] for some 4 : Q, — A* and A = L[¢] such that the weight of
04 is not zero and D4 deforms Dy, (the cokernel of HS}W(RA(Z(SZQEA)) — H_(Rp(ze ")) maps

injectively into HZ (Rp(ze™')) =0). O
Lemma 3.26. The map ‘X‘SL,VJ — |Xp, .0l in the above proof is formally smooth of relative

dimension 1.

Proof. Let A’ — A = A’/I be a surjection in Cj, such that 12 = 0. Let vy € Enda/ (A%
1
0
M € I, +IMy(A") (where I, is the identity matrix) such that My M~1 = vz. To show the claim,

write v _<
Al =
C d

such that vy = vy = mod I and det(va/) = tr(va) = 0. We claim that there exists

)fora,b,c,dEIA’ and suppose that M = I, + z g) for z,y,z,w € TA'.

Since I? = 0, one can calculate that Mvy = vy M if and only if (Z w_Zx) = (Z Z) As

det(vas) = tr(va/) = 0 implies that d = —a and ¢ = 0, the solutions exist.

The above discussion shows that the map is formally smooth. To see the relative dimension,
we only need to calculate the difference between tangent spaces. Let A = Lle]. The fiber in
IX5  |(A) over given (Da,ta) € |Xp, 0/(A) (by the above discussion we may suppose that

Dy ,vr
v = (0 é)) consists of matrices M of the form I+ ¢ (g i) for x,y € L which span a space of

dimension two. Two such matrices give the same object in ‘X‘SL,VL [(A) if and only if there exists
an automorphism D4 — D4 which reduces to identity modulo € (determined by an element in
L = HY_(Endg,(Dr))) and induces the automorphism of Dyar(D4). Hence the fibers between
tangent spaces have dimension one. O

Lemma 3.27. Let A € Cr, and let 04 : Qg — A* be a continuous character such that 64 = 1
mod my. Then 5%1 Q) = A e ba(z)? = > is0 (%)(5,4(:5) —1)% defines the unique character

such that (53 =1 mod my and 64 = (6i)2.

We will use the flatness in Proposition in the following situation. Let ) = Sp(A) be
an affinoid over L together with a (¢,T')-module D4. Let I C A be the ideal generalized by
coefficients of the Sen polynomial cutting out the locus where D4 has Sen weights (0,0) and
D" the completion along this locus, A" the completion with respect to I (cf. Appendix [B). Let
h: Sp(A) — X2 and A" : P* — (X2){ be the morphism of stacks induced by Ds and (Da/rn)n.

pdR

Let Dpar : 9" — (X2)0 Drg g/G be the composite and let DEdR YN =N X6 9 — g be
the base change.

Corollary 3.28. In the above situation, suppose that h is smooth in the sense of versal maps: for
any L'-point y : Sp(L') — Sp(A) and z : Sp(L') % Sp(A) LN Xo, the induced map Fspa),y —
Fxy,0 = Xp,, is formally smooth. Then the map DEdR - YNE 5 g is flat in the sense that maps
between versal rings at points with residue fields finite over L are flat.
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Proof. An L'-point y" : Sp(L') — 9P corresponds to a map Sp(L’) — A such that the pullback
Dy has weights (0,0) together with a framing o/ : Dpar(Dr/) ~ (L)% Let vr, € g(L’) be the
nilpotent element. By the difinition of 95, the deformation problem Fynro,0 sends A e Cp
to pairs (aar @ Dpar(Da @4 A') ~ (A')?,A — A’) where A — A’ is a morphism such that
A — L' factors through A’ and aar = ap mod my,. Then (Dar = Dy @4 A'ytar : Dar Qa
L' = Dp,aq) € ng (A") deforming 25 = (Dp/,upr,ap) € XEL/(L’). By our assumption

fmA,D,yD = Fyry X Fo/Guy,s Fawy = Fory XXp,, XDE/ is formally smooth over XDE/' By

Proposition the versal ring map which induces X o — Fy,,, is flat. Hence the composite
L’

map For0,0 — Fgu,, 1s also flat. O

Remark 3.29. Locally on )1, one can choose a trivialization Dde(DA/I) on %); where 2),, =
Sp(A/I™). Then YT = Y1 x GLy and Dyar(Dy),) is free with a basis on ). We can lift this
basis by Nakayama lemma to a basis of Dpar(Dar) = lim Dpar(Dayn) which is a finite free
A”-module by Lemma We get a trivialization 92 = 9" x GL,.

Cover 9" by affinoids of the form Sp(B/I) x U where Sp(B) C Sp(A) and U C GLy are
affinoid opens. Let C' = BR&;O(U) and C” be its I-adic completion. The morphism Sp(C)" =
Sp(B)" x U — g of ringed sites factors through an affinoid V' C g. In fact, write g = Useng<ps :=
Usen Sp(L(p*a, p*b, p*c, p*d)). The map Sp(B)" x U — g is determined by sending a, b, ¢, d to the
matrix coefficients of vor € Endena (Dpar(Dcn)) under the trivialization Dpar(Deon) ~ (C)? on
Sp(C)". Take s such that p®a,---,p°d are topologically nilpotent in C/I. Then for any n > 1,
p®a,- -+ ,p°d are also topologically nilpotent in C'/I™ and induces li . Sp(C/I™) — g<ps. The ring
maps O(g<p<) — C” and La, b, c,d] — C" are flat by Corollary and Lemma below.

Lemma 3.30. Let A be an Noetherian ring with an ideal I and I-adic completion A™. Let B be
another Noetherian ring and g : B — A" be a morphism of rings. Suppose that for any mazimal
ideal m of A™ and n = g~1(m), the homomorphism En — IZQL of complete local rings is flat. Then
the ring map g is flat itself.

Proof. Since I is in the Jacobson radical of A", maximal ideals of A" is in bijection with maximal
ideals of A/I = A"/I. By [Sta24, [Tag 00HT], its enough to show that for all m, n as above, the map

By — (AM)y is flat. Since both A" and B are Noetherian, the maps (A")y — A% and By — By
are faithfully flat, the flatness of the map between Zariski local rings follows (by definition). O

4. TRANSLATIONS IN FAMILY FOR GL2(Q,)

We will recall the definition of translations for (¢,I")-modules in [Din23] in the GL2(Q)) case.
We will need some explicit calculations for translations in families. It will be shown that the
translation from regular weights to non-regular weights is the same as the change of weights of
(¢, I')-modules. From now on, K = Q,.

The Lie algebra g = gl, is spanned by

(U )= )= D=0 )
s=atra= (" )o=arma = (1)

The Casimir operator ¢ = h? — 25 + duTu~ € U(g).
Let A be an affinoid algebra over L. A (p,T')-module D4 over R4 is a P+ = (Zp \0 Zp)-

We write

1
module and is a pT-module where p* = L[a™, u™] via the identifications

o= (") r=(% ) ama-oi(* o

The actions of u* on D, is given by v — £ (14 X)*v|.—o = log(1+X)v = tv and a* by V = Vge,
by the lemma below.

Lemma 4.1. Suppose that D"y is a (¢,I')-module over Ry, then the map v — %H:w.v,'y €
Zy =1 defines the Sen operator Vsen acting on DY.


https://stacks.math.columbia.edu/tag/00HT
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Proof. The proof is the same as the case when A is a field using [Ber02l Lem. 5.2]. It is proved in
[KPX14l Prop. 2.2.14] that the action of I' on D’ extends to an action of the distribution algebra
of T which contains the element a™. ]

Definition 4.2. A (¢,T, g)-module over R’, is a (¢, I')-module D, (in the sense of [KPX14l Def.
2.2.12]) over R’, with an A-linear continuous action of U(g) extending the action of U(p*) such

that the U(g)-action extends continuously to D% for all 0 < s < 7 and pu™ =p~lu"@,pa” =a" ¢

under ¢ : D — D;/p. A (o, T, g)-module over R4 is a (¢,I')-module over R4 with an action of
U(g) that is the base change from R” to R4 for a (¢, T, g)-module over R’, and some r > 0.

A (¢,T, g)-module is naturally a (P, g)-module defined in a similar way where PT acts con-
tinuously. If D4 is a (¢, T, g)-module, then the action of Z(g) commutes with ¢, I, R7,.

Lemma 4.3. Let D" be a (o,T')-module over R"y of rank two. Write Psen(T) =T? — 1T + 70 €
A[T] for the Sen polynomial of D 4. There exists a unique A-linear g-module structure on D7 such
that ¢ acts on Dy by (72 —4y0 —1) and 3 acts by y1 — 1 making Dy (resp. Da) a (¢,T, g)-module.

Proof. This is just [Coll8, Prop. 2.2]. We declare the (unique) action of a~ by 3 —a™, h =
2
at —a~ =2V —3 =2V —~ +1 and u~ by =0 +£20 — —Ps%m. The last one is possible

ut

because Psen(V)Da C tD4 by the same reason for TCOHS, Lem. 1.6] using Proposition We
can check this formally defines an action of g. For example for v € D4, we have [u™,u"|v =
(wtu™ —uut)v = —Psen(V) + t 1 Psen(V)tv = —(V2 — 11V +y0)v + 71V — 1V + yo)tv =
(2V — 41 + 1)v = h.v using that V(tv) = tv + tV(v). We also check that pu~ = p~lu~"¢ using
that ¢ commutes with 3, ¢ and put = puTe. O

Definition 4.4. We say the g-module structure in Lemma [£:3] the standard g-module structure
for a rank 2 (¢,I")-module over R4 or R';.

Remark 4.5. Tt is possible to equip a (¢, T')-module with different g-structures. See [Din23, Rem.
2.14] for more discussions.

Let Vi = Sym*L? = R} /X*+! be the irreducible representation of g of highest weight (k,0)
(for the Borel subalgebra the algebra of upper-triangular matrices). Here R} = D(Z,, L) C Ry
is the distribution algebra of Z, identified with rigid analytic functions in variable X on the open
unit disc. If D7 is a (¢,T, g)-module, then D" ®, Vi is also a (P, g)-module via the diagonal
action of PT. The following observation is due to Ding.

Proposition 4.6 ([Din23, Prop. 2.1]). Suppose that D4 is a (o,T',g)-module over R4. The
diagonal action of R, = D(Z,, L)®LA extends to an action of Ra making Da @1, Vi a (o,T,g)-
module over Ra. And there is a filtration

0CDa®r X"RE/XM coo.cDyawp XIRE /XM .. c Dy RE/XFH
of (¢,T')-modules (as well as p*-modules, but not as g-modules) with graded pieces
Da®p (X'RE/X™Y) ~t'Da
for 0 <i<k.

Proof. By definition, there exists r such that D4 is the base change of D7, from a finite projective
module over R”,. We will prove (and will use) the statement for D7,.

The same proof of loc. cit. shows that the action of R} extends to an action of R, on
D", ®p, V. We give a direct proof here. Notice that for X = [1] — 1 € L[[Z,]] € D(Z,,L),
g € Dy and v € Vi, we have X(X " lg®v) = g@v+ X 'g® Xv+ g ® Xv. We then get
+gov)=Xlgev— +(Elg® Xv) = X lgov - g Xv+ +((5H)%9 @ X?) =
Zfzo(—%)i)(_lg ® X%. Hence X ™(g ®v) = Zf:o (mﬂjizl)(—%)iX_T’Lg ® X'v. And we
conclude that f(X)(g®@v) = Zf:o (X + 1)'f@(X)g® X' where f*) denotes the i-th derivative
of f. The extension of the action follows since if f € R"y = O(U" x Sp(A)), so is its derivative for
X. Then D7 ®r, Vi, becomes a projective R’;-module with a R’;-filtration. The projectivity is due
to that extensions of projective modules are projective.

We extend the ¢, I" actions diagonally. For example ¢ : D’y — RZ‘/ P @rr D7, gives a map Dy @,
Ry /XM = (RY? @y, DY) @ RE /X1, There is an R P-isomorphism ¥ : RY{? @r;, (D} @1,
R /XY = (R @y, DY) @R /XM f(X) @ (g@00) = Dig(5(X + 1)1 fO(X)0g)® X'y
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for f(X) € Rg/p, g € D%, v € R} /X* ! which is well-defined and extends the R} -actions (given
by the diagonal action of Z,). We get the desired ¢-action map: D’ ®r, RJLr/Xk"‘1 — R;/p ®rr,
(DR@LRE /XMt g@m — U (p(g)®p(m)). The equality =" (¢(f(X +1).(99m))) = f((X+
1)P).(T7H(p(g) ® p(m))) is equivalent to that (f(X +1).(g @m)) = fF((X +1)?).(¢(g) ® ¢(m))
which can be checked formally.

See Lemma below for the last isomorphism. O

Lemma 4.7. If A — B is a morphism of affinoid algebras and Dy is an (p,T, g)-module, then
Dy ®r, Rp is also a (¢, T, g)-module and there is an isomorphism (D @, RE /X* 1) @r, Rp ~
(Da ®r, RB) @ RE/X 1Y) as (p,T, g)-modules.

Proof. Welet Z(g) C U(g) acts on the (p,I')-module Dp := D4 ®% , Rp by extending the scalars.
To show that D is a (¢, T, g)-module, we need to show that the action of u~ = —1 (¢ —h?+2h) is
defined, or that (¢ — (2V —3)2 +2(2V —3))Dp C tDp. Using Proposition that D (Dp) =
Dg (Da)®a B, the extension of the u~ action follows. The map (D4 ®1 R} /XY @r, Rp —
(Da ®r, Rp) @1 RE/X 1) is given by (9 @ v) ® f Zf:o LX + 1) fO(X)g ® X' for
g € Dy,v € Rf /X*+1. The map induces isomorphisms on graded pieces of the filtration in
Proposition hence is an isomorphism of (p,T")-modules over Rp itself. Tt is a g-isomorphism
since it is moreover compatible with the R p-linear actions of Z(g). O

We need recall translations of g-modules.

Lemma 4.8. Let R be a ring.

(1) Suppose that R is commutative with a nilpotent ideal I and Vg is an R-module equipped
with an R-linear endomorphism C. Let a,b € R such that a —b € I. Then Vg{C = a} =
Vr{C = b} where {C = —} denotes the generalized eigenspace.

(2) Let R be an L-algebra. Suppose that Vi is an R-module and Z is a commutative algebra
finitely generated over L with an L-morphism Z — Endgr(Vg). Suppose that Vg is locally
Z-finite (for any v € Vg, Zv C Vg s finite-dimensional over L). Then the R-morphism
OmespecMax(2) VRIM™®] — VR is an isomorphism.

(3) Let R — S be a morphism of L-algebras. Let Vg = Vg ®r S and let Z act on Vg by
extending the scalar. Suppose that Vg is locally Z-finite. Then for any m € SpecMax(Z),
the natural map VRm™] ®r S — Vg[m®™] is an isomorphism.

Proof. (1) Let # = b—a € I. Let T = C —a. Then (T —x)* = Y7 (5) (1)~ "Tz"~" If
v € V is killed by some power of T', since it is killed by some power of z, it is killed by some power
(T —z)* = (C —-b)*.

(2) The decomposition (as L-spaces) holds for all finite-dimensional Z-modules.

(3) This follows from the decompositions in (2) for Vg and Vg and that Vx[m*>]®pg S is mapped
into (Vg ®g S)[m>]. O

For two weights A\, u € t* = Homp(t, L) such that v = A\ — pu € Z? is integral, write 7 for the
dominant weight in the Weyl group orbits of v for the linear Weyl group action. We recall the
following definitions (see [JLS21l §2.3, §2.4.1]). For A € t*, let my C Z(g) be the kernel of the
infinitesimal character ) attached to A via the Harish-Chandra isomorphism.

Definition 4.9. Let M be a U(g)-module.

(1) We say M is locally Z(g)-finite if for any v € M, the subspace Z(g).v is finite-dimensional
over L.

(2) If M is locally Z(g)-finite, write prjy M = M[m5°].

(3) If M is locally Z(g)-finite, T} M := pry (pr) M @1 L(D)).

Remark that if M is Z(g)-finite, then M ®y L(7) is also locally Z(g)-finite (see [BG80, Cor.
2.6 (ii)]). Moreover, there is a direct sum decomposition M = ©yespecMax(z(g))M [m™]. If M =
M[m®] for some m = my and A + p is dominant, then

MV = @#EWt(V)prMJrMI(M ® V)

for any finite dimensional g-module V' where p runs over all t-weights appeared in V' (see the end
of [BG&O0, §2]). Moreover, if 0 — M; — M — My — 0 is a short exact sequence of U(g)-modules
such that Mj, Ms are locally Z(g)-finite, then so is M.
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Lemma 4.10. Let Ay, , A, € t* such that \j11 — A\; € X* (1)1 are dominant integral weights for
alln—12>1i>1 and suppose that A1 + (1,0) is dominant. Then for a locally Z(g)-finite g-module
M, there are natural isomorphisms

T TP M~ TRn M~ pryy  (prjx, M @ L(A — A2) @ -+ & L(Ap — A1)

Proof. The tensor product L(A; — A2) ® - -+ ® L(A\,, — Ap—1) has a direct summand L(\, — A1) of
multiplicity one and all the other summands are irreducible representations with highest weight
i < Ap — A1 by induction using Steinberg’s theorem [Ste61]. O

Lemma 4.11. Let D be a (p,T',g)-module over Ra that is locally Z(g)-finite. Let I be the
nilradical of A.

(1) Suppose that x1,4,x2.4 : Z(g) = A are two characters such that x1 = x2 mod I. Then
Da{Z(g) = x1,4} = Da{Z(g) = x2.4}

(2) Let A € t* and xa = xa corresponding to my € SpecMax(Z(g)). Then the generalized
eigenspace Da{Z(g) = xa} = Da[m$°] is a (¢, I')-module.

(8) In the situation of (2). The functor Da{Z(g) = xa} is exact on locally Z(g)-finite (¢, T, g)-
modules and its formation commutes with arbitrary base change, i.e., for any map A — B
of L-affinoid algebras, we have Da[m°] g, Rp ~ Dp[m$°] where Dp = Dy Qr, REB.

Proof. (1) An affinoid algebra A over L is Jacobson and Noetherian. The nilradical I is nilpotent.
The statement follows from that Z(g) is finitely generated and Lemma

(2) Since the action of Z(g) commutes with the (¢,T',g)-module structure on Dy, we see
Da{Z(g) = xa} is a Ra-module with compatible actions of ¢,T',g. It suffices to show that
Da{Z(g) = xa} is a (¢, T, g)-module. By (2) of Lemma[£.8] D’ [m$°] is a direct summand of D}.
Then D’j[ms°] is finite projective over R”y and we have D4{Z(g) = xa} = Ra ®@r7, D4{Z(g) =
XA}

(3) This also follows from Lemma [4.8] O

For Sen weights h = (hy, ho) € Z2 hy < hg, we write A = A\, = (ha—1, hy) for the corresponding
character of b where A+ (1,0) is dominant. Then X, is the infinitesimal character Z(g) — L : 3 —
h1+h2—1,tl—> (hl—h2)2—1.

Proposition 4.12. Let Dy be an almost de Rham (¢,T')-module of rank two over R4 with Sen
weights (hy, ha), h1 < ho, equipped with the standard U(g)-module structure by Lemma . Then
Da =Da{Z(g) = xr}. And for any p € X*(t), T{' D4 is an almost de Rham (p,T')-module over
Ra provided that T!D 4 # 0. Moreover, the formation of T{'Ds commutes with base change.

Proof. In Lemma Z(g) act on D4 by a character xa(3) = v1 — 1 and ya(c) = (7% — 4y — 1) if
the Sen polynomial equals to T2 — v, T 4+ . Since D4 pointwisely has Sen weights h1, ko, the Sen
polynomial equals to (T'— hq)(T — he) at all closed points of Spec(A). An element f € A is in the
nilradical I of A if f € m for every maximal ideal m of A. We see X2 — y1 X +v = X2 — (ha +
h1)X + hihy mod I. Thus x4 = x» mod I. Hence Dy = Da[Z(g) = xa] = Da{Z(g) = x»} by
(1) of Lemma The other statements follow from the same lemma, Lemma and Proposition
4.0l ]

Corollary 4.13. We equip rank two (p,T')-modules D 4 with the standard g-structures.

(1) Suppose that D 4 is almost de Rham with pointwisely reqular Sen weights (hy, ho) € 72, hy <
ha. Then for any integral weight = (hh, — 1, h}) such that hy < hfy, T{'D4 is almost de
Rham of rank two pointwisely with Sen weights (h], hj).

(2) Suppose that D4 is almost de Rham with pointwisely non-regular Sen weights (h},hy) €
72,1 = (hy — 1,hY),hy = hh. Then for any integral weight X = (hy — 1,hy) such that
h1 < ho, T;i‘DA is almost de Rham of rank 4.

Proof. In any case T{'D 4 is a (¢,T")-module by Proposition and its rank, being almost de
Rham and Sen weights can be checked at points. The statements follow from the case when A is
a field which was studied in [Din23, Prop. 2.19]. O

Remark 4.14. In the case when A — p = (1,0) and D4 has non-regular Sen weights, T:‘DA =
Dy ®r Vi

We start calculations of translations. The easiest case is a twist by an algebraic character.
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Lemma 4.15. Fori € Z, let Lt' be the algebraic character det® of GLy which is also a g-module.
Then for a rank 2 (¢, T)-module D4 over Ra, t'Da with the standard g-module structure is equal
to Da ®y, Lt*.

Proof. On det’ = Lt* we have u*.t" = 0 and a*.t* = it". Thus for z&t*, 2 € D4 we get u™. (x@t) =

tr@t’, at.(z@t') = (et +i)r @t and u™.(z@t') = u" .2t = Ps“r‘(v):v(gnfZ For tiz € t*D 4 we
have ut.(t'z) = t'*1z,at.(t'2) = t'(a™ +i)x, 5.0 = (y1 — 1 + 2i)z in the notation of Lemma[4.3]

Hence a= .t'x = t'(y; —1+2i—a® —i)x = t'((a” +i)x). And v .tz = —L’e;(v)tix = —tiipse‘;(v)x
where P, denotes the Sen polynomial of t*D 4. The last equality comes from V.t'z = t/(V + i)z
and P§, (T) = Psen(T — i) = T? — (y1 + 20)T + o + im1 + i°. O

By a twist, we only need to discuss the case when at least one of the weights of an almost de
Rham (¢, I')-module is zero.

Lemma 4.16. Let D4 be an almost de Rham (¢, T')-module over R 4 with pointwisely reqular Sen
weights hy < hy. Then there exists a, § € A such that Psen(T) = (T —a)(T =) and a« —hy, B —ha
are in the nilradical I of A.

Proof. We have Psen(T) = (T — h1)(T — hy) mod I. Hence Psen(hy) € I. Moreover P& (hy) =
hi — hy ¢ I. By Hensel’s lemma, we can find o € A such that & = hy mod I and Psen(a) = 0.
Then Pse, must be of the form (T — «)(T — ) such that 8 = hy mod I. O

Proposition 4.17. Let D4 be an almost de Rham (o,T)-module pointwisely with regular Sens
weight (0,k) and let A\ = (k — 1,0) where k > 1. We assume that the Sen polynomial is equal to
(T—(k+2z—h)(T - (z+h)) for z,h in the nilradical of A (which is possible by Lemma .
(1) Let = (k—1,k). The natural map T\'Dg < D ®p, Vi, — Dy identifies T{' D s with the
unique almost de Rham (¢, T")-submodule inside D 4 of weights (k, k) such that T{' D [$] =
D a[3], which contains t* D 4 and is the preimage of (DA/tk)[Hk 1(V (k4+z—h)—1i)=0].
(2) Let X' = (k' —1,0) for k' > k. The natural map T)\ '‘DasDa®LV,— Dy fori=kK —k
identifies TY\'D o with the unique almost de Rham (¢,T)-submodule inside D4 such that
TQIDA[%] = D3] of weights (0,k") and consists of v € D4 such that [T]_o(V — (z+h) —
iy €titIDy forall j <1—1.
In both cases, the output of the translation is a rank two (p,T")-module and admits an infinitesimal
character.

Proof. The last assertion follows from Corollary or by the case when [ = 1 using the calcula-
tion below and by an induction as for [Din23| Prop. 2.19].

Let I > 1. The element 3 acts on Dy ®1 V; by 22+ k+ 1 — 1. Let e be the lowest weight vector
of RF /X" ~V; :a— ae. Then h = 2a* — 3 acts by 2V — 22 — k+ 1 on D4 and by 2i —
on tle; ut by t on Dy and t = log(1 + X) = Y oiso0 (_Z.l)iXi on Vj; u~ by —%Psen(V) on D4 and
u”.tle = i(l — i + 1)t te so that ¢ = h% — 2h + 4utu~ acts on V; by 12 + 2I. Hence the Casimir
acts by (for v € D4,0 < i <[ and with the convention that t*~le = 0 if i = 0)

4.1

( c.)(v®tie) =((2V+1—-22—k+2i—1)> =22V +1—-22 —k+2i — )o@ te
+4i(l—i+ 1) (v@te+tv@tTe) — 4Psen(V)v @ tle — 4t~ Poen (Vv @ t e
=(4(2i =)V + 22+ k =21+ 1> -1 —4(z+h)(k+2z—h) +4i(l —i +1))v @ tle
+4i(l —i+ Dtv @t e — 4t Psen (Vv @t e
=42 =DV + (y1 =2 +1)? =1 =4y +4i(l —i + 1)o@ t'e
+4i(l —i+ Dtv @t e — 4t Psen(V)v @t e

where 71 =2z 4+ k and v9 = (2 + h)(k+ z — h).
(1) Now | = k.

clv@tie) = (4(2i — k)V+4(i(1 — 22 — k) + kz + k> — hk + h?) — 1)v @ t'e
+4i(k — i+ Dtv @t e — 4t Pson (V)v @ £ e,
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Suppose that Zf:o v; @ tle is an eigenvalue for 4h? — 1. Consider the coefficient in D4 of 1 ® e we
get dktvy + (—4kV +4(kz +k* — hk +h?) — 1)vg = (4h% — 1)vg. We see v1 =t~ H(V — (k+2z—h))vo.
We prove by induction that v; = = (V — (k 4+ z — h))v;_1 for i > 1. Suppose the statement holds
for i —1 > 0. Then t ! Psen(V)vi1 = i(V — (2 + h) + 1)v;. Consider the coefficient of 1 ® t'e we

get
747:(v7(Z+h)+1)'Ui+(4(2'[;7k)v+4(i(17227k)+kz+k27hk+h2)71)'Ui+4(7:+1)(k*i)t'l)i_l,_l = (4h2—1)vi

which is equivalent to that v;11 = ﬁ(v —(k+2z—h))v; unless ¢ > k. And if i = k the equality
holds under the induction assumption.
Thus
] 1
H;(V—(k—&—z—h))vo: (V= (ktz—h)=(k=1))(V = (k+2z=h))uo € Da.

i=0
By the discussion in D)y ={veDal| (V- (k+z—h))v € Da} defines the unique
sub-(¢, I')-module of D4 such that D/,[1] = D4[1] and D/, is almost de Rham of weight (1,k).
By Proposition the description of T{' D 4 follows from the following statement:

Lemma 4.18. Let M be a continuous I'-representation over (A®q, Ky, )|[t] with the connection V
as in Appendiz[A| such that the characteristic polynomial of ¥V on M/tM is (X — (k+z—h))(X —
(24 h)) for k € Z>¢ and h, z nilpotent. Then there is a direct sum decomposition

M/tPM = aF MV = (k+2—h+ )] @MV = (2 + h +1)]

where all the direct summands are projective of rank one over A ®q, K.

(2) Suppose that ' v; ® tie is an eigenvector of ¢ for the eigenvalue (k + [ — 2h)2 — 1.
Consider the coefficient of 1 ® e we get 4ltvy + (—4IV + (22 +k+1)2 —4(k+2—h)(z+h) — 1)vy =
((k +1—2h)* = 1)vg. We see v1 = +(V — (h + 2))vg. We prove by induction that we must

have v; = £(V — (h + 2))v;—1 for i > 1. Assume that the statement holds for i — 1 > 0. Then

t7 1 Psen(V)vi1 = i(V — (k+ 2 — h) + 1)v;. Consider the coefficient of 1 ® t'e we get
—4i(V—(k+z—=h)+Dv;+ @42 — DV + 22+ k—2i+1)* -1 —4(z+h)(k+2z—h) +4i(l —i+ 1)y,
+4(i 4+ 1) (1 — i) tvigr = ((k +1—2h)% — 1)
1

which is equivalent to that v;4; = m(v — (h+ 2))v; unless ¢ > I. And if i = [ the equality
holds under the statement.

To see the uniqueness. Assume that D', C D4 with Sen weights (0,%’) and such that D/,[3] =
Da[3]. Then Dpar(DY) = Dpar(Da) and Fil’Dpgr(DY) C Fil’Dpgr(Da) by definition. Since
FilODde(D;‘), FilODde(DA) are both direct summand of Dpqr (D ) of rank one, FilODPdR(D;x) =
Fil’ Dpar (D’y) which determines D" (D’y) for some m and also D’y by results in Appendix
The description holds as for (1) and by an induction on . O

From non-regular weights to regular weights we only treat the easiest case.

Proposition 4.19. Let A be an almost de Rham (p,T')-module pointwisely with non-regular
Sen weights (0,0), p = (=1,0) and A = (0,0). Then the natural map TpApx — Ay ®p Vi is an
isomorphism. If the Sen polynomial of A 4 is T? —y1 T+ € A[T), then (¢c—v3+4v0)? = 4(v¥ —4v0)
on AqQp V1.
Proof. We follow the notation in the proof of Proposition By (4.1) (replacing k + 2z by v
and (k+ 2z — h)(z+ h) by ), we see
(c—yi+470).(v®t'e) = (4(2i—1)V+4i(1—71)+271 )o@t e+4i(2—i)tv@t' ™ te—dt ™! Psen (V)oet He.
For ¢ = 0 we have

(c— 2 4+4v).(v®e) = (—4V + 2y )o@ e — 4t 1 (V2 =1V + yo)v @ te
and for i =1

(c— 73 +4v).(v@te) = 4V +4 -2y )v@te+dtv@e.

Then (¢ — 92 +4v)? — 4(7? — 479) = 0 on A ®1 V4 by a direct check. O

The following proposition describes the counit map of the adjunction of the translations in the
case k = 1.
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Proposition 4.20. Let A = (0,0) and pn = (—1,0). Let D4 be an almost de Rham (p,T")-module
of weight (1,0) over A with Sen polynomial (T — (z —h+1))(T — (2 + h)) where z, h are nilpotent.
Let Aq Ct7 1Dy be the sub (p,T')-module of Sen weights (0,0) in Pmposition which provides
the isomorphism Ay =T{Da. Let ¢ = ¢ — 4h? which acts on D4 by —4h.

Then the composite T;‘AA = T’fT)‘fDA — Dy < A4 induced by the counit map T?Ti‘DA — Dy

(e
is equal to T} Ax(= Aa @ RE/X?) Tl TXAalc+4h] C Ay @1 RE/X? > Ay,

Proof. Before the proof, note that Proposition shows that A4 contains D 4 and identifies A 4
with the preimage of (t7D4/Da)[V = z — h]. Also by Proposition m (¢ —4h)(c + 4h) acts as
Zero on T;‘A A.

Recall we identify RJLr /X? ~ Sym'L? = Lz & Ly where 1 = y is the lowest weight vector,
t =X = z. Let (Sym'L?)V = La* @ Ly* be the dual where z*,y* are the dual basis. We fix an
isomorphism Lt~! @y R} /X? ~det ' ®,Sym'L? = (Sym'L*)V by t ' @1 = 2*,t ' @t = —y*
(since u™.2* = —y*). The unit and counit map is induced by

L— (Le*® Ly")®@r (Led Ly) - L
1=z r+y" Qy

where the second map is the evaluation map.
The map Tli‘AA = T;TfDA — Dy < A4 factors through (by Lemma [4.15))

T)T{Ds=As LR} /X? 5 t'Da®@p RE/X?@L RY/X? = Da = Ay

where v € A 4 is sent to v@e+t~H(V—(z—h))v@te in t "D 4@ R T /X2 by the proof of Proposition
The image of (v@e+t 1V —(z—h))v@te)®e € (t1Ds®L RE/X?) @ RE/X? via the
evaluation map in D4 is —(V — (z — h))v and the image of (v®e+t"1(V — (2 — h))v @ te) @ te is
tv.

On the other hand, for v € A4, using 1) again for Ay ®p, RE/XQ,

(c£4h).(vet'e) = (4(2i—1)V+4i(1—22)+dzE4h)v@tle+4i(2—i) vt te—4t ™ Psen (V)vat e,
For ¢ = 0 we have
(c—4h).(v®@e) =4(=V + (2 — h))v @ e — 4t Psen(V)v @ te.
and
(c—4h).(vete) =4(V+(1—2z—-h))v@te+4tvQe.

Hence the image of $(c—4h)(v®e) in Ay is (—V 4+ 2z — h)v and the image of §(c—4h)(v ® te) in
AA is tw. O

5. GEOMETRIC TRANSLATIONS FOR GL2(Q,)

We will prove our main results on the geometric translations in the GL2(Q,) case (Theorem
. We first make necessary preparations in for the study of the direct image of (¢,T')-
modules over formal rigid spaces in Construction [5.4f We prove our main result in which
compares the direct image and the translation. The interested reader may consult the pointwise
cases in §5.3|first or the description in Corollary [5.12] for the basic ideas on computations. We take
G =GLy/p, K=Qpand f:g—g.

5.1. Formal completion of (¢, I')-modules. A (¢,T')-module D’ over R’; for an affinoid algebra
A over L is equivalently a (o, T')-bundle on ng( a4) = Sp(A) x, U, namely a I'-equivariant vector

bundle Dgp(A) on [ng(A) equipped with an isomorphism @*DQP(A) ~ Dgp("‘)'Uéfffm commuting
with I'-actions. This point of view will be more convenient for the consideration of cohomologies

(but will not work for translations), and we need a similar description for formal completions of
(¢, T)-modules. A basic discussion on coherent modules over formal rigid spaces can be found in
Appendix [B]

Let Sp(A) € Rig; with an ideal I of A. Let 9),, = Sp(4/I™) and P" := lim 9. The latter is
a ringed site with the structure sheaf Oy = l'mn Oy, whose global section is A" := @n A/I™.
There is a sheaf of Oys-module R\ := @n Ry, for small enough r > 0 whose global section is
Run = l&nn Rg/jn. We define R := HA’IT Rx.
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Recall that for r small enough and s < r, ¢ : REZ’T] — REZ/p’T/p]7Rf4 — R;/p make the

targets finite free of rank p over the sources and we have R;{p = @ (14 X)'p(RY). Taking

I-adic completion, we get R/P = @P-} (1 + X)ip(R",.) and taking direct limit R 4n = @®P- (1 +
X)Z(p(RAA )

Definition 5.1. Let X" be the formal completion of a rigid space X along a Zariski closed subspace
defined by a coherent ideal sheaf Z as in Definition

(1) A (¢,I')-module (resp. (¢,T', g)-module) D5, over Ry, := Im R% is a locally finite
projective R%s-module with a (¢, I")-structure, i.e., an isomorphism

o QO*DQ/\ — R;//{’ ®SO7R;/\ D;/\ ~ RT%//{) ®R;/\ D;/\

commuting with a semilinear action of T' (resp. (p,I')-structure and an action of g) such
that there exist (¢, I')-modules (resp. (p, T, g)-modules as in Definition DY~ over
R, satisfying D%, .. /I" = D% for all n > 1 and there exists an isomorphism D% =~
lim D% .

(2) A (¢,T)-module Dxr over Rxs := lim Ryn is a Rx-module with (¢, T')-structure
such that there exists a (¢,I')-module D%\ over R%s and Dxsr = Rxa ®Rr DY\ =

’
3 T T
hﬂr’<r Rxl\ ®R§c/\ Dx/\ '

The underlying Ry-module of a (p,I')-module Dy over Ry, is the Ry-module associated
to its global section D7 which is finite projective over R’: for any affinoid open Sp(B) C 9,
['(Sp(B), Dy) = D} ®rr, R. A vector bundle over Uy is equivalently a compatible family of

finite projective modules over R[@S’T] or ’REj’T] for s < r. We can similarly define the notion of vector

bundles or ¢-bundles over U%A = lii>ns’n U[@S’T].

n

Lemma 5.2. Let g : Uy — N be the projection.
uppose tha A s a finite projective R"y »-module, then D"~ is I-adically complete an
1) 8§ that Dy @ it jective R, dule, then D" is I-adicall let d
is the global section of a wvector bundle (REZ/TI],1 R, D% ) sm over Upn. Moreover for
’I"I S r, RTAI/\ ®R2A DZ/\ == @n DZ/[ﬂ'
aking global sections on induces an equivalence between the category o ~-modules
2) Taki lobal secti N ind wal bet the cat Ry dul
of the form Dy, = @n Dy, where Dy, —are Ry, -modules associated to projective R’”A/In -
modules and D{DnH/I" = Dy, for all n and the category of finite projective R’y »-modules.

(8) The direct image functor g. induces an equivalence of categories between p-bundles over
Uy and finite projective p-modules over Ry -

Proof. (1) If D" is a finite projective R’y »-module, we may find another finite module D’ such
that D, @ D" ~ (R"»)™ for some n. Since (R"+)" is I-adically complete [Sta24] Tag 05GG], so

P . o1 r T [s;r] _y: r ) [s,7]
is its direct summand. Hence D, = mn DA/In = @n’s DA/In = Linms DA/” ®R;‘/I" AJn =
[s,7] [s,7]

l'gls(DQ\A Qrr , Riyn ) (for the last equality we use that D7, @rr, Ryn is I-adically complete

being finite projective over ’REZ"AT]). The statement for D’ follows similarly.

(2) Suppose that (D{D")n is a collection of finite projective R -modules (giving vector bundles
on U%n) such that Dy, = Linn Dy, . Write D} /.. = LYy, Dy, ). B},, the definition of inverse
limit of sheaves, for any affinoid open Sp(B) C 9, I'(Sp(B/I), Dy») = @nF(Sp(B/I”),D%n) =
D i=1m Ry, @y, DY) Hence the section is finite projective over Rz, and DA /1™ =
R%/I” ®R2/1n DQ/I,L by (2) of Lemma w Then Dzn = DA R, %~ (both sides are I-
adically complete by (1)). Take B = A we see the global section is finite projective. The essential
surjectivity follows from (1): given a (p, I')-module D’ finite projective over R’y 1, D’ /I™ defines
sheaves D, and T'(9", lim Dy ) = D} The fully faithfulness follows as for (2) of Lemma

(3) Let DjA = (Dgr])én be a p-bundle on U, .. By [KPX14, Prop. 2.2.7], the global section of
(DS’:})S for a fix n defines via g, a finite projective ¢-module denoted by Dy over Ry . By the

equivalence of loc. cit., we have D%n/I"_1 = Dy, _,. Hence the Ry),-module Dy, := lim Dy,
is finite projective over Ry, by (2). Thus g. sends p-bundles to fintie projective p-modules (see
also Lemma below). The fully faithfulness of g, follows from mod I™-cases in [KPX14, Prop.
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2.2.7] and that for two ¢-modules Dy, Dy (which are I-adically complete by (1))
HomRr (D7, D%) LHomRr (DY, D5 /I™) = lim Homzy (DT/I", D5 /1™).

The essential surjectivity follows from (1) and (2). O

Remark 5.3. Since we will only deal with finite projective modules, we ignore if we can define the
notion of coadmissible modules over the topological ring Ry, = lim_ RE’/TI],L as for modules over
v in [STO3, §3).
We construct below our major players: some (¢, I')-module D%A over a formal rigid space 2~jA
projective over 9) and we will study its direct image along the map 9" — 9".
Construction 5.4. Fix h = (hy, he) € Z?,hy < ha. Let 9 = Sp(A) € Rig; be an affinoid with

a (¢,I')-module A4 of rank 2 over ) base changed from a (¢, I')-module A7 over R, for some

r > 0. We assume that r is taken such that the number m(r) is large enough for Dgff(r) (A7) in
the sense of Definition [A-4l

Let I be the ideal of A generated by zeroth and the first coefficients of the Sen polynomial
of As. Let 9, = Sp(A/I™) and P" = lim),,. By definition, DN =9 xx, (X2)0. According

to Proposition D" = 1 D) = DN x X (x)n (X2)h = D" Xg/q §/G. In the following, we

construct explicitly these spaces and the universal (p, T')-module Dg . over R

Dpar  ~
9" (X2)p —— §/G
lfh lfh lf
D
9" (X2)g — g/G.

Write Ag, for the base change of A’y. Proposition gives a vector bundle Dyar(Ay, ) on ),
together with a nilpotent operator vy, such that Dpar(Ay),) ®o,,, O, , = Dpar(Ay,_,) for
n > 2. Let Y be the GLo-torsor over 9),, trivializing Dyar(Dy), ). Then 9 xo9, Vo1 = VY4
The nilpotent operator vy, induces YL — g. Let PV = P x, g and Y., = [YY/GLy]. Then 9),,
is a rigid analytic space projective over 9),, and 9, Xg, Dn-1 = Vn-1. Let P = hg@ﬁ (see
Remark Pelow). Let A@n be the pullback and Ai)A = mn A~n.

On each 2),,, the universal v-stable filtration of Dde(Agj ) provided from g gives a I-invariant
(Km ®q, Og )[[t]-lattice of weight h inside D{i(Ag ) by Proposition and by Proposition
we obtain a modification D% of A”. on 9),, which is a (¢, I')-module over R% . Let D%A =
'mn D% . We write D%A for D%A viewed as coherent sheaves on U% and similarly D%A =
&, Py,

Finally, let D@A = ligﬂr D%A, a (¢, T')-module in the sense of Definition

Remark 5.5. With the trivialization of Dpgr(Dan) as in Remark v induces maps 2, — ¢
and 9, = 2, Xg g. And PN = lim Yy, xg g. We also note that in this (local) case, A"-linear
operator on (A")? = Dyqr(Dan) induces a scheme map Spec(A”") — g®8. The proper formal rigid
space QNJ/\ over 2" is the relative analytification of the formal completion of a projective scheme
Spec(A™) X gaie g2ls PépCC(A/\) over Spec(A”) in the way discussed before Corollary

By discussions in Appendix @ D%A = @1“ D%n is a coherent (’)U%A—module and is locally free
of rank two (Lemma .

We still write fr, : 9" — 9" for the morphism of ringed spaces with the sheaves of abstract
rings R~ or Ogj/w and Ry. or Oyn, via the map f}:er A~ — RE or f}:lo@A — O@A

/\ /\

Definition 5.6. We write R f}, ,, *D@ resp. Rfy, D~A7 resp. Rfn «Dg . to be the derived direct
image of the sheaf of (9~ _-module DT , Tesp. OQJA module D~ resp (’)@A—module D@A along
the map fy [Sta24] |Tag 071J]

Remark 5.7. The direct image will only work well after Lemma 8 below. The sheaves fu p, *D~
and fh,*D% remain to have the I'-actions but may not be (p,I')-modules as in Definition

AN
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namely they may not be projective over R’" or R%A and the map

.t % T
<p.th’* —>th( ® g)ADLDA)

induced by ¢ : DL = — Rr/p ®Rr DlTDA a priori may not factor through R Ryn Rifhy*D’iA.
We use fy, , [U’” — UQJ to denote the base change of fi, and similarly f] : % — UQJA

AN

By Corollary |B . R fh sends coherent OU’ . ~modules to coherent (’)Uv -modules. Consider the

diagram

’é’ ~
Uy, —— 2"

of ringed sites with structure sheaves Oyr ,(9®A, etc.
DA
Lemma 5.8. Let DQ)A’DSZ)“ be as in C’onstructwn
(1) For eachn > 1, Rg*D~ = DT as modules over jo Similarly Rﬁ*D%A = D%A. Hence
th,*D~ = Rg.Rf} *D;)A and Rfn, *D~ = Rg*th *D’" foralln > 1.
(2) As sheaves ofT\’, ~-modules with T'- actwns szh *D~ g*Riff;*D%A and are isomorphic
to the inverse limit li Ln g« R fh’*DQJn / | | /
(3) Forr" <r andi >0, the natural map Riyn Ry 0 leh,*D%A — R1f117*(7?,£~7A R, D%A)

is an isomorphism provided that Rifﬂ,*D% is a locally finite free OU%A -module. In this

case, Rifh)*D%A is a (¢, I')-module over Ryn.
(4) For each i, R fy, +Dgn = lim Rifh’*D%A. Under the assumption in (3), the direct image
Rifn.D Hn is a (¢, T')-module and Rifh,*D@A =Ry~ ®RQ,A Rifn.D

Proof. (1) The first statement is classical and follows from the vanishing of higher coherent coho-
mologies of quasi-Stein spaces U" [Kie67]. The derived direct image commutes with derived inverse
limit [Sta24l Tag 0BKP). The inverse systems (D@ ) and (D% ) are Mittag-Leffler. We get that

RE*D@ —Rg*Rhm D~ —Rhm Rg*D~ —Dr

(2) By Corollary and its proof) for each i > 0 R'ff *D%A is a coherent OU% . -module and
R I+ D5 5 Ln R fh7*D% is an inverse limit of a Mittag-Leffler inverse system. We see

n

Rg.R'f}, Dy, = Rg*R%nR fi Dy, = RL%IRQ*R fu+Dy,
= R%ng*R fh,*D@n = %HQ*R fh’*D@n

The last equality follows from that the exact functor g, sends a Mittag-Leffler system to a Mittag-
Leffler system.

(3) Suppose that Rifﬂ*D%A is a vector bundle. The isomorphism ¢ : @*D%A o~ D%A|Uﬂp

DA

induces via Rfﬁ/f isomorphisms ¢*Rf, *DC ~ Rfr/p(D’“ lyre) = (Rfg *D%A)hm/p (by flat

) ) A ’ 9N
base changes). By (3) of Lemma and (2), R fu, *D%A
is finite projective corresponding to the restriction of

is a finite projective Dj,.-module which
also ensures that R%A ®R% R’ fh *D@A
Ry *D%A to U'Q’J/A. The isomorphism follows from that R%A ®R%A D%A corresponds to the

restriction of D%A to U%A via (glyr )« and the g-structure on R'fy, DL comes from the ¢-
22 < ;jA

2)/\
structure on R'ff D% via (g| r/p)s-
N R U%)A
(4) The map 21 — 21 is a proper map between quasi-compact spaces, the direct image of
Ogr-modules can be computed as R fn.«D g = I ' fio lim DQ)A lim Rifh,*D%A by [Sta24]
Tag 0739, Tag 07TA| and [GV06, Exposé V Prop. 5.1] (and [Bosl4, Prop. 6.3/4]). The last
equality follows from that colimits commute with tensor product. O
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5.2. Direct image and translation. In this subsection we prove our main results on geometric
translations of (¢,I')-modules in the Construction Discussions in are served for the
following hypothesis.

Hypothesis 5.9. We assume that the map 95 := li 2]‘:' — g in Construction is flat, in
the sense that it satisfies the conclusion of Corollary (and hence Remark [3.29).

Proposition 5.10. Assume Hypothesis and let h = (hq, he) such that k = ho — hy € Z>1.
Then Rf{L*D% concentrates in degree zero and is a locally finite projective module of rank 4 over

OU% N

AN

Proof. By a twist, we assume that h; = 0. Then by construction, there are inclusions of vector
bundles tkA% — D% — A%

Note that A%n/tkA%n = ILusm Dg?f’Jr(Agjn)/tk (cf. |Liuldl Prop. 2.15]) and taking in-
verse limit A’i JJRAL = L5 mer Dt (A Hnr) )/tk. The latter can be viewed as a coherent
OUL -module supported on dlSJOlIlt divisors cut out by Q,(X )k for m > m(r), where t =
X Hm>1 Qm(X), see Appendlx Write U™ for the completion of U” along locus Sp(L®q, Km)

cut out by Q,,(X). The sheaf D$§+(A@A) is exactly the @,,(X)-adic completion of A%A and we
can identify Dgff(A@A)/t as the pullback of Ag, to D" x 1. Sp(L ®q, Km) C DN x, U

On QjA the rank two projective O@A—module Dpar = Dde(AQjA) is equipped with a universal
submodule Fil” stabilized by vz, (now Vg is only topologically nilpotent). Set the decreasing
filtration Fil® on Dpar(Ag.) by Fil™% = Dpag 2 Fil"™ = ... = Fil® D Fil' = {0}. Under the
equivalence in Proposition for each m, the filtration Fil® gives the projective Sub—O@A w L UA "
module D'f};* (Dg; ), a modification of Dt (Agn)- By the identification in Step 1 of the proof of

Proposition and the assumption that m(r) is large enough (which holds modulo I"™ and after
taking inverse limit as well), as Gg = Oy = (Ogn xq, Kn)l[t]]-modules

QJA XL[U/\ m
Diii" (D) = Dpar ®0g, S, + Fil’ @05, S0,
and

(5.1) Diii"(Aga) = Dpar ®0y, & Dy (t*Agn) = Dpar ®0y, t°Gg1 ,,

5°) H
Since the sequence 0 — Fil® — Dpar — Dde/Fil0 — 0 splits locally as OﬁA—modules, the
injection ’

(5.2) Fil’ ®o,, (Ogn @0, Kn)[[t]/t* = DIt (Dg,) /£ D™ (Ag.)

is an isomorphism.

To show that Rfy *DT is locally free of rank 4, we can work locally on Uy~ Take s <r. Write
D[Q;:} , A[s " for their restriction to U; " and f[s A 5 o, U[g 7Tt enough to show Rf[s o’ D[s r]
is prOJectlve of rank 4 over O lerl ) for all r, s such that m(s) = m(r) + 1. We may assume that the
torsor PN — PN is trivial a: in Remark [3.29] - Choose an affinoid open U = Sp(B) C GLy and

consider the restriction f[é ol Us[;:xU — USZLU We get the diagram

[s,7]

DAXU

/ ifff&\‘

ogt o,

g
[w]/ J
[sr g

2)/\

where the parallelograms are Cartesian (modulo I™).



28 ZHIXIANG WU

The formal rigid space U[S’Il (resp. USI&U) is the completion of an affinoid space and Ugf]

(resp. U[@’A] ,) comes from a projective scheme over Spec((’)(lllgf])) (resp. Spec((’)(UlSleU))) in

the sense before Corollary . Hence R’ fhs*r ’D[S "l is a coherent Oyts 7] -module for all 4 > 0 and
can be computed on the scheme level. The same statement holds snmlarly for R’ llfgl* ~*Dlg rl.
Also the maps Ug;’rle — g — g*# in Remark factor through Spec(O(U;’:LU)) — g8, Then
a*Rifk[jleg’rl R E&LN Dg;, by the flat base change [Sta24, Tag 02KH] and R [S’TlD[S’Tl is
projective of rank 4 if and only if so is R! fov [S’T *D[S = R Tou [s.r] ple.r] by the falthfully flat

U,* DAXU
descent [Sta24] Tag 058S] and Lemma[5.11] below
Consider the short exact sequences of coherent O

(e.g., (6.2) and m = m(r))

yte1 -modules from the first part of the proof
PN XU

0 Al DB S P @0y, (Oga . G, Km)[H]/1* = 0,
0— D;AT] v Agfl v Dpar/Fil” Q051 (Ognyu Og, K.)[[t]/tF — o.

By our construction of @A U the pullback Dyar ®oQJA O@AxU admits a tautological trivializa-
tion Dpar ®o, Ogn,yy Ow , and the subsheaf Fil’ ®o_, Oy, = DigrO5(—1) is the
tautological subbundle pulled back from § — G/B = P! where we write Dpqr for the flat map
Spec(O(Y”" x U)) — g (induced by the nilpotent operator v) and Ede for the base change of
Dde.

Let fuu : f)A x U — 9" x U be the base change of f,. The sheaf Fil” ®0g (O@Axu ®q, Km)

is supported on the closed subscheme of U%’:le cut out by @Q,,(X) and

RESELFIC @0, (Oga g @0, Km) [/t = (Rfn v DsarO5(-1)) @g, Knl[t])/"

as a coherent sheaf supported on the closed subscheime of US’ZLU cut out by Q,(X)*. By the
flat base change and (1) of Proposition Rfo,vD5qr05(£1) = Dy g RfOg(+1) concentrate
in degree zero and are locally free of rank two over 9" x U.

By the projection formula, thS T]*A@SAT]X(] = Alsfo ®0,., o thS ] Rf NAA©) Opisr1 - Since 3
ED DAXU

is flat by the assumption that the map 9Y — g is flat, thsf}]*Rf sl 0 plerl =B RERf*Og =
@AXU

B* f« Oy is free of rank two over O Then we get short exact sequences

Uyiho”
(5.3) 0— fi5 tm[f”‘] i lﬂé[}]*ogﬁw — Dlap f+O05(—1) ®q, Kn[t]/t" — 0,

0= f U*D;ILU = AT = Dhanf.05(1) 8g, Kull]/tF — 0.

Finally to see that f B, *D[6 T]X is locally free of rank 4 over Oy..; , by [BL95], it is enough to
IJ/\
consider its completion along the divisor (9" x 1, U) x 1, Sp(L ®q, Km) cut out by Qm( ) which

is a (Ogn .y Xq, K,,)[[t]]-module. Then the result follows from Lemma |3.17} that fh U ;):le
is free of rank 4 over Oy vl and that D7 g f.O5(1) ®q, Kn[[t]]/t* is finite flat over Ognxv xq,
Ko [[t])/t". O

Lemma 5.11. Let g : X = Sp(B) — Y = Sp(A) be a flat (resp. faithfully flat) morphism of
affinoid spaces and let I C A be an ideal. Let A™, B" be the I-adic completions. Then the ring
maps A — B and AN — B” are flat (resp. faithfully flat).

Proof. By definition, for any z € X and f(z) € Y corresponding to maximal ideals m C B,n C A,
the local ring map Oy, y(,;) — Ox, is flat. Since both rings are Noetherian, flatness can be checked
after completion and thus also on the Zariski local rings A, — By,. By [Sta24, Tag 00HT], B is flat
over A. The assertion about flatness after completion is by Lemma For faithfully flatness, if
Spec(B”) — Spec(A™) is surjective on closed points and flat, it is surjective by [Sta24] Tag 00HS].


https://stacks.math.columbia.edu/tag/02KH
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As I is topologically nilpotent in A" and A” is I-adically complete, I is in the Jacobson radical of
A”. The surjectivity on closed points follows from the surjectivity of Spec(B/I) — Spec(A/I). O

Over QjA the topologically nilpotent operator vy acts on the universal sub-line bundle Fil°
of Dde(A@A) and the quotient Dpar (A @A)/Filo This gives elements Zga T h@A € OP") ~
End@- (Filo) and ZLDA — hng € (’)(23 ) ~ EndoA (D de( )/Fll ). We view Zgn and h . as
global sectlons of fh «Ogya (cf. Corollary As a corollary of the proof of Proposition and
(3) of Proposition we get the following explicit description of R fhv*D@ when h = (0, k)

AN

Corollary 5.12. Suppose h = (0,k),k > 1 and assume Hypothesis Then th7*A%A =
Apr @0y f0,:0 G s a (¢, T)-module of rank 4 over Riy.. And th D~ is the rank 4 sub-

(¢, T)-module of fh7*A%

(54 fosDy P fun A, = @f;afh,*Ang/tkfh,*Agy)[VSQH = (2gn + hga) +1l.
Proof. We write ﬁgy for A%A QO fh,*OﬁA By Proposition | the map f, *D~A — AQJA

induced by DT C AL s injective and the image contains t*Ar. .. Hence it suffices to determine

/\

containing tkfh,*A%A determined by

the image of

(5.5) Fup D, Ay Ay [t AY = [T Dt (Agn)/th.
m>m(r)

The operator Vge, acts on each D$§+(£@A)/tk. Under the identification 7 Dde(gmA) ®q,
K [[t]/t* = (Dpar(Agr) ®q, Kn[[t]/t*) ®0y J10,Ogn, and the Sen operator Ve, corresponds
to the topologically nilpotent operator vys on Dpar(Agn) where we extend the action of vy on
v ® g € Dpar(Agn) ®ar (A" @q, Kn)[[t] by vyr (v ® g) = vga(v) @ g +v® V(g) (see Step 1 of
the proof of Proposition and note Vgep (t2) = t(Vsen + 1)(z)). The identity will follow
from that the image of (5.5)) is equal to the submodule

[[ @i (Dpar(Byr) ®q, Kullt]]/t*)lvgn = (2. + hagn + )],
m>m(r)

We view objects appeared in 1-) as coherent sheaves on UQ)A supported on divisors cut out
by Q. (X) for m > m(r). By faithfully flat descent we only need to verify the equality after base
change to 9" x U as in the proof of Proposition and we adapt the notation there. By (/5.3] .,

we see

fntDy /B = [T DpardO5(=1) @q, Konll] /1

m>m(r)
By (3) of Proposition [2.4] the righthand side is the sheaf
[I Dran((Ff (OF*)ly = (h+2)]) ®g, Knllt)]/1*.

m>m(r)

Since Dpgr is flat, D;de*f*(OSe2) = fh,U,*fﬁ,UDde(Aiz]AxU) = Dde(Ag)/\xU) (under the
canonical trivialization Dpar(Agsxy) = D;dRC’)SBZ) and that v, 2, and h are pulled back to
VYAXU s Zgins and hﬁA respectively, we get

oD /By s = [ Doar(Byrxo)lvyrxu = (hga + 272)] ©q, Kullt])/t*

m>m(r)
[ @2 (' Dpar(Byrxu) @a, Km)lvynxu = (hgn + 2g.) + 1]
m>m(r)
Hence the description (5.4) holds. O

We define translations of formal completions of (¢, I')-modules.

Definition 5.13. Let X" = hﬂn X,, be the formal completion of a quasi-compact rigid space X
with respect to a coherent ideal sheaf 7 (Definition [B.1). Let D%. be a (¢,T', g)-module over

%~ (Definition . Assume that DY is locally Z(g)-finite (in the sense that there is a finite
admissible covering of X; by open affinoids such that DY is locally Z(g)-finite when restricted to
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these affinoids). Let X, u € X*(t) be integral weights. We define the translation of D%, from the
infinitesimal character associated to A to that of u by

TngEA = l'ng)’fD;n.

And if Dxr = Rxa ®R;/\ D;A,
T{ Dxn := lim T{ D}

The translation is always a (¢, I')-module with a g-action (cf. Proposition |4.12)).
Recall that if X — s (0, k) or (k,0) for some k > 0, then T}’ D% = pry, (pry D%, @ V).

Lemma 5.14. Let f, : 9" — " be the map in Construction . Suppose that leA is a
such that th7*Dg is a (¢, T)-module over Y™ (cf. Lemma .

A

(¢, T, g)-module over R%

(1) The natural isomorphism th,*(D%TA ®p Vi) >~ (th7*Dl®’TA) ®r Vi of Oynr-modules (pro-
vided by Vi, ~ L2*+1) ) is an isomorphism of (¢, T, g)-modules.
(2) Furthermore, if D@’r is locally Z(g)-finite with a generalized infinitesimal character given
1
by A, then the isomorphism in (1) induces an isomorphism th,*TA“DQjTA ~ T/’\‘th,*D@’TA.

Proof. (1) We verify the isomorphism fh,*(D%TA ®r Vi) =~ ( fh7*D;~’)TA) ®p, Vi is an isomorphism of
(¢,T, g)-module. Recall V¥ = Sym*L? = R} /X*+1. Then D/@TA QL Vi = @fZOD;jTA ®r X'L and
fh)*(D;jrA ®r Vi) = @?:ofh,*D:jjTA ®p XL ~ fh7*D;j’TA ®r, Vi with obvious maps. And the sheaf
J‘}L*(D,@’TA ®r, Vi) is determined by its section over 9” as for J‘},,*D;{A (Lemma . Forgeg
and Zf:o a; @ Xt € fh,*D%TA ®r Vi, we have g.(Zf:O a; @ X = Zf:o g.a; @ X' + Zf:o a; ®
g.X" = Zfzo(g.ai + >, ¢jiaj) @ X' where g.X* = 37, - ¢;;X7. The g action on Zf:o a; @ Xt €
fh)*(D;j’rA ®r Vi) (resp. on a; € fh7*D/§’)TA) is given by the same formula viewing Zf:() a; ® X!
(resp. a;) as global sections on 2~jA. Hence the g-actions coincide. Similar statements hold for
the actions of ¢ and I'. It remains to show that the map is R}, -linear. By Lemma we have

fh7*(D'®’TA @1 Vi) = lim fh,*(D'@’: ®1 Vi) and fh,*D'Qj’“A = lim_ fh,*D'g’: as sheaves of Ry, .-module.
Let f = (fa)n € Ryn = @n Ry, act on @1” fh’*Dé’Tn. For Zf:o ;X e fh’*D/@’TA ®r, Vi, write
similarly a; = (a;n)n € @n fh7*D/2i):. By the proof of Proposition the action of f,, on a; , ®X"’
is given by fi,.(a;, ® X*) = Z?:o %(X +1)7 £ (X)a; ® X3*1. Same equation holds if we view
a;n®X" as a global section of D/@: ®r, V}, for the action of f, via f, 172%” — R%n. Taking inverse
limit we get the compatibility of RQ)A-actions.

(2) If ng: is locally Z(g)-finite, since ),, is quasi-compact, Rifh7*D,@’: is locally Z(g)-finite (one
can choose a finite affinoid covering of I@n to calculate th,e c/ohomology). By taking inverse limit,
we have a direct sum decomposition D@TA QL Vi =@ TY D@TA for finitely many p’. We conclude
by noticing that Z(g) acts on fn 1% D;{A =1lim  fu.T e D/@’: locally profinitely with generalized
infinitesimal character p. ]

Theorem 5.15. Let A = A\, = (ha — 1,hy) for h = (hy,hs) € Z?,hy < hy and p = Ao,0) =
(=1,0) be weights in X*(t). Let fn : D" — D" and D%A,A%A be the map and (p,T')-modules in
Construction . We equip D%A and A%A with the standard g-module structures in Definition
144}

(1) There is an isomorphism of (p,T', g)-modules

(5.6) T{Dg, =~ fili, = AL, = I'%mA%n

s
over R@A'
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(2) Under Hypothesz's the adjunction of fﬁT:‘A%A = Tlf‘A%A — D%A (as (¢, T')-bundles
over U%A) induces an isomorphism

(5.7) T Apyn ~ RfnDg,

of (¢, I, g)-modules of rank 4 over Ryn.
Proof. (1) The statement follows from the construction of Dg,. =lm Dg Ty D, =lim Ty Dy

and Proposition [4.17]
(2) We first assume that h = (0,1). By Proposition and Hypothesis th’*DiJA =

fh-,*D%A' Write ﬁgy for A”QJA @0y fh’*O@A. The unit map for (¢, I')-bundles and the projection
formula induce a map T}AY. = TRAYs ®0y0 fusfiOpr = TpAy, = fu T)AL (the last
equation is by Lemma(5.14). The isomorphism Af =~ T{ Dy, induces T;;\A%A — Dj, and hence
T 2‘ fh,*A%A — fh,*D%A- The composite of the two maps gives the desired g-map

n

A

T Ay = fo TR A, — fos D,

We show that this map is an isomorphism of (¢, I')-modules over R%A.

By Hypothesis [5.9] flat base change and faithfully flat descent as in the proof of Proposition
statements of Proposition hold replacing f : g — g by fu : Eﬁ — ) after suitable
modifications. In particular, fh,*(QgA is locally free of rank two over Oy~ generated by the
element h@A defined before Corollary Write for short z = Zgin and h = h@A. The composite

~ le_p2_p ~ ~
le\Ang — TF’}A%A A T)‘AgjA — A%A sends vg®1+v1 ®t € TQA%A to (=V+2z—h)vg+tu;
by the proof of Proposition (all these maps are inverse limits of maps modulo I™). This
map is an injection (Agr = Agsr @ hAyr) and the image contains tAgn (for thug € thAgn,
(V—2)tvg

let v; = ~—"=*). Modulo tﬁgy, the image of T:‘AQJA as a sub-Oga-module of A%A/t =

HmZm(r) Dé"cn(ﬁmA) ®q, Km is HmZm(T)(V —(2—h))Dg, (Ayr) ®q, Km. By (2) of Proposition
and the flatness Hypothesis thisjmage is identified with Hmzm(r) Dg”en(ﬁ@A)[V =(z+
h)] ®q, Km, i.e., is equal to fh,*D%A/tA%A by Corollary |5.12 By Proposition [4.20] and taking

le—h2-h

, is identified with T) A% .
T:‘&%A — ZT@A Hence the composite T:‘Ar A — fh7*T:‘A%A — fh7*D%A
the same image in A%A given by Corollary We have finished the case h = (0,1).

Finally, we treat general h’ = (0,k),k > 1. Write A’ = \p. We have simply fi, = fn : 9" —
D", Write DgﬁrA for the universal (p,I')-module over ’R%

direct image, the composite fh,*Tl;\A%,\ — ]"117*D%A — fh,*A%

is an isomorphism, with

of weights h’ and write D%A for the one

A

with weights h = (0,1). By Proposition [4.17 D’Qj’; ~ T;\'D%A. Then fh,,*D'Q{A ~ fh/,*TQ’D;;DA ~
Tﬁ\/fh”*DEA by Lemma(5.14] Since TL/L\AQDA ~ fh’*D%A, we see fh”*D:j)TA ~ T)z\\/T,j\AT N Tli\'A%A
(Lemma . Note that this isomorphism is induced by T[L\AQDA Qr Vi1 =~ fh7*D%A Qr Vi1

which, by the case for h, is induced by the adjunction of T;‘A%A QL Vi1 — D%A ®r Vi—1. Taking

pr|y| everywhere we see the isomorphism fh/,*D;{A ~ T;\/A%A is induced by T;L\IA%A — D;{A O

Taking colimit for » > 0 and considering Lemma [5.8] we get the following corollary.
Corollary 5.16. Under Hypothesis[5.9, we have
T;\‘DgA ~ frlAgn
and
T:A@A ~ th,*D@A.

5.3. Specialization to points. We show how to use Theorem to recover some results of
Ding. Suppose we are in the situation of Construction We fix an L-point y of 9" and write
A = A, for the specialization of Ay~ at the point y. Let iy : y — 21 — " be the closed
embedding and consider the restriction fy : fi, Yy) =y of fu.



32 ZHIXIANG WU

Fl ) s 9

J o lfh

y(z—y>gy/\

By the projection formula [Sta24, Tag 08EU| (and the arguments in the proof of Proposition
of reducing to scheme-theoretic cohomologies), we have

(5.8) iy,*LiZth,*D%A = th7*D%/\ ®(€)@ Iy« Oy =~ th,*(D%A ®éf5A Lf}tiy,*oy)~

)

By Theorem the left-hand side equals T;L\A;' assuming Hypothesis

Lemma 5.17. Assume Hypothesis[5.9
(1) If A, is de Rham, then f;, '(y) = G/B = P! is reduced and

Lfjiy Oy =i, . (Op1(=2)[1] © Op:[0])

where Op1(—2)[1] denotes the line bundle Op1(—2) sitting in cohomological degree —1.
(2) If A, is not de Rham, then f '(y) is a finite ramified cover of degree 2 over y and

LfjiyaOy = firiy,:Oy =i, .01,

Proof. Consider the diagram (of schemes, to be lazy) below:

fily) —— P — PrE L g

ny i lfh ’ le ; lf

y —— P — P g

where all squares are Cartesian. Choose a lift = of y in 95 and let vy be the image of y in g.
If the nilpotent element v, # 0, all vertical maps are finite flat of rank 2 near y, yH or vy by the
statement on g (Lemma [2.3]) and we get (2).

From now on we assume v, = 0 and prove (1). Consider the embedding éj/\ﬂ L H =
PN x G/B and still write 8: 90 x G/B — g x G/B. Let Ty be the ideal sheaf for the regular
closed embedding g < g x G/B, which is locally free of rank one. Since § is flat, Z := 3*Z,
is the ideal sheaf cutting out @A’D from P x G/B. Let J be the ideal sheaf for the closed
embedding a~!(y) x G/B — Y™ x G/B. Then T C J as points on a~'(y) are all de Rham
(a~}(y) x G/B — DAI).

f a7 W) = a M y) x G/B —— PN s H =90 x G/B

| e+~
i
Oé_l(y a—1(y)

) g)/\,D
In the notation of the above diagram, using that k& is smooth, we get

LfE7*7:a—1(y)’*oa—1(y) = Lj*k*ia—l(y)’*oa—l(y) = L]*OH/j

While
Lj*Oy /T = OH/I®éH Ou/J =T — On|®o, Ou/T =I®0, Ou/T — Ou/J].

Since Z C J, the map Z ®o,, On/J — Og/J is zero. We calculate the restriction of the line
bundle Z to a~!(y) x G/B whose structure sheaf is Oy /J. The ideal Zy on g x G/ B corresponds

to the condition that (v,gB) € g x G/B such that Ad(g~!)(v) € b. Write Ad(g~!)(v) = <(Cl Z),

then change g to gh for h = <x ;Zl) € B sends a local generator ¢ € Zy to 2%c. This means that

the restriction of Zy to G/B is Opi(—2) (G xB X for A = (1, -1)). Thus Lfy " in-1()xOa-1(y) =
Ofu,_l(a,l(y)) @ Ofu,_l(a,l(y))(—Q)[l]. The statement for L f}ii, O, follows from descent. O
h g h y
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Remark 5.18. Write ig : {0} < g and P! = f~1(0). With the proof of the lemma above we
see LigRf.O5 = R(flp1)«(Op1(—-2)[1] ® Op1[0]) = OFyy. The calculation matches the fact that
Rf.0O5(s) is locally free of rank two for s = 0, %1 in

Write Dp1 for the universal (p,T')-module on f;, ' (y) (the restriction of Dy, to fi, ' (y)).
Lemma 5.19. Ifh = (0,1), then Rf, .(Dp.) = tA" and Rf, .(Dp.(—2)[1]) = A".

Proof. The proof goes as for Proposition and Corollary We only do formal calculations
here. Let Ap1 be the pullback of A. The inclusions tAL, C Dp, C Ap, gives short exact sequences
0 — tAp: — Dp1 — Dpi /tAp: — 0

and
0— .DTPI — ATPI — D{:l/A{)1 — 0.
The inclusion Dj, /tAL, < AL, /tAL, = R} /t@,0%, has image R /t®1Op:(—1) and the quo-
tient Af, /tAL, — AL, /Dp, corresponds to the quotient R} /t@ 03, — R} /t@,Op:1(1). Hence
we have
Rfy (D JtAp:) = Rfy (R} Jt@1O0p1 (—1)) = R} t&LRfy «Op1(—1) = 0,
Rfy(Dp1 /Dpi (~2)) = Rfy (R} 131 0p1 (<1)) = Ry B LR, Ops (~1) = 0.
Moreover,
Rf, «tApy = tA"®LRf, .Op1 = tA”;
Rfy«(Ap1(=2)[1]) = A"®LRf,.Op1(=2)[1] = A"
The result follows. |

We recover [Din23| Lem. 2.17] below.

Proposition 5.20. Suppose that h = (0,1) and assume Hypothesis .
(1) If A = A, is de Rham, then T:‘A = z';;]”h*D@A =ADtA.
(2) If A = A, is not de Rham, then T}j‘A = i;fh,*DQ}A is a self extension of D,,, where D, is
the unique (¢, T')-module of rank two over Ry, of weight h such that T{' D, = A.

Proof. Since D%A is flat over Og,, we get D%A ®é§A Lfiiy «Oy = iy (Dpi (=2)[1] © Dpy) if

A, is de Rham and is equal to D W) otherwise by Lemma By Lemma we have
thv*(D%/\ ®éw Lfiy«Oy) =iy« Rfy«(Dpi (=2)[1]® D5, ) = A"®tA" in the de Rham case. Use
and take the direct limit over r, we get (1). (2) follows similarly using that th—l(y) ~ L[h]/h*.
Note that by Proposition and the proof of Theorem the Casimir ¢ acts by 4h% — 4h on
T A for some choice of h. O

Remark 5.21. In general for h = (0,k) and in the de Rham case, there is a filtration t*Ap:1 C
D1,y C -+ C D1y C Do,y = Dpr of (¢, I')-modules of rank two where D(; 1y has Hodge-Tate
weight (¢, k) by the proof of Proposition The graded pieces D; i)/ D(;+1,k) are isomorphic to
Op1(—1)®1 R/t as in Lemma [5.19 (See) and we can get similarly T)A = A @ tFA.

5.4. Translation of DXP!(Q,). Let A be an affinoid algebra over L and D4 be a (¢,I')-module
over R of rank 2. Write w = wy be the character such that Rs(wae) = det(D4). Pointwisely
for x € Sp(A), Colmez constructed a GL2(Qp)-representation (or a GL2(Qp)-equivariant sheaf
on PY(Q,)) D, K, PY(Q,) ([Coli6, [Coll8, [Coll0]). It is expected that the construction can
vary in family and obtain a GL2(Q,)-module D4 X, P1(Q,). We will not discuss the GL2(Q,)-
module, but only construct a U(g)-module Dy X P}(Q,). Recall P*(Q,) \ Z, = I1.Z, where

() ) e

Definition 5.22. Equip D4 with the standard g-module structure in Lemma [£.3] Define D4 X
Z, = D4 to be the U(g) @, A-module D4. Let D4 X (P*(Q,)\Z,) be the U(g) @1, A-module I1.D 4
which has the underlying A-module D4 and g acts on Iz, 2 € Dy by g.Ilz = II(Ad(IT~1)(g).2).
Define Dy K PY(Q,) = Ds K Z, ® Dy K (PHQp) \ Zy).
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Remark 5.23. The character w is not important for the U(g)-modules due to our definition. But

it matters for GL2(Q,)-representations, namly for how (1 1) acts on DX Z.

Hence D4 X P(Q,) is just two copies of D4 with certain g-action. We can similarly define
DLXPY(Q,) (= D& <1 1> ©(D7)). Let us go back to the situation in Construction Sheafify
the above definition we obtain sheaves of U(g)-modules Dg K P'(Q,) and Ayr KPH(Q,).

Corollary 5.24. Under Hypothesz's there are isomorphisms of sheaves of U(g)-modules
T¢(Dg, WPY(Q,)) = Rfi(Ays WPY(Q,)

and
T, (Ayr B PY(Qy)) = Rfn.(Dg. K PH(Qy)),

where all notations appeared should be understood as for sheaves of (p,T')-modules with certain

g-actions.

Proof. Over Z,, this is just Corollary For the copy on P1(Q,) \ Z,, just notice that for
k>1, (I.D4) ®p Sym*L? ~ 11.(D4 @1, Sym* L?) as U(g)-modules (since the g-action on Sym”L?
integrates to a GL2(Qp)-action) and the adjoint action of IT acts trivially on the center of U(g). O

APPENDIX A. ON FAMILIES OF (¢,I"x)-MODULES

A.1. Beauville-Laszlo glueing. We let K be a p-adic local field. Recall
t =log([e]) = Xq, [ Qm(Xe,)/p-

m>1
Here @, is the minimal polynomial of (,m —1 over Q,, Xq, = [e]—1,e = (1,(p, -+ ,Gpm,- ) € O%m
where K ~ denotes the p-adic completion and {,= is a primitive p™-th root of unity. For m > m(r),
the continuous I'g-equivariant injection tm, : Rg i < K [[t] can be seen as the completion with
respect to the kernel (Qn(Xg,)) of Ry, x — Km = Ry, x/@m(Xg,) (see [Ber08a, §1.2] and
[Ber02, Lem. 4.9]). For an affinoid algebra A over Q,, the ring (4 ®q, K)[[t]] is the completion
of R’y ;¢ with respect to the ideal (Qm(Xg,)) and we still write v, : Rl ¢ — (A ®q, Kn)|[t]]-
Suppose that D4 is a (¢, I'x )-module over R 4 k of rank n, base changed from a (¢, 'k )-module
DYy from R ;- for some r. Define Dgibf""(DA) = (A@Km)[[t]] @i R

by definition tpyi1 = tm 0 ¢!, the map Kp[[t] — Kpai[[t] induced by ¢ : Ry — RYP is

n o D for m = m(r). Since
K, [[t]]-linear and ¢*D7) = R;/,I;( ®prr, . D =~ DTA/p induces a I'g-linear isomorphism (A ®q,
K4 )[It]] ®aso, k)10 Dt (Da) = D+ (D)

Definition A.1. A (p,I'x)-module My (resp. M}) over Ra k[7] (resp. R i [7]) is a finite
projective RAVK[%]—module (resp. finite projective RTA’K[%]—module) equipped with commuting
continuous semi-linear actions of ¢, 'k (resp. I'g-isomorphism ¢*M’ ~ M:x/ Py such that there
exists a (¢, ['x)-module D" over R, and an isomorphism M4 ~ R4 k(1] ®rr, . DY (vesp. M} ~
s [l] ® , D'r’) s
AK Lt Ry x A

Lemma A.2. The ring R}y j ist torsion-free.

Proof. The short exact sequence 0 — R[I?T] x4 R[IS(’T] — T\’,[I‘?T] /t — 0 splits as Q,-Banach spaces as

[s7]

in the proof of [Liulf, Prop. 2.15]. Taking the completed tensor with A we see R}, is t-torsion
free for all r, s. The limit R , = T&ng REZQ is still ¢-torsion free. O

1

The functor D};(—) extends naturally for (¢, I'xc)-modules over R’ ;-[7] and m > m(r) by in-

verting t. And the p-action induces D} (Ma) ~ (A®g, Km41)[[t]][3] D(A®q, Km)[H][2] D1 (Ma).

Proposition A.3. Suppose that r is chosen such that t is invertible in RZZ]{ and m = m(r). The
functor

T s s 1 m, T m T m, T 1
Dy (M} = DA[E]deif+(DA)deif(MA) = Ddier(DA)[E])
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induces an equivalence of categories
"t L BT m,+
Ty i ~ P4 i XRepr, , (i) RePgi 4 (T'k)

between the category of (,I'k)-modules over Ry - and the category of triples (MQ,DZEf’t‘,am)
where M7 is a (¢, Tk )-module over R”AK[%], D;?f’:; is a continuous semilinear T i -representation
over a projective (A ®q, Kn)[[t]]-module of rank n and oy, : Dgff’;[%] ~ D7(MY). The inverse
functor is given by (write Dgilfj = (Km ®q, A[[t]] ® k.20, 4)11] Dg?f’f; form’ >m)

’ LTI By
(M3, D com) = { € M3 | () € Dk © Dy 15] % DRp(M), V' > m).

Moreover, the equivalence commutes with arbitrary base change.

Proof. This follows from the Beauville-Laszlo lemma [BL95] and the consideration of y-actions.
A finite projective ¢p-module D7 ;- over R is equivalently the global section of a ¢-bundle D7
over the relative annulus U” xq, Sp(Kj ®q, A4) (see [KPX14, Prop. 2.2.7]). In terms of vector
bundles, a p-module M} over Ry x[1] corresponds to a @-bundle over U™ xq, Sp(K{ ®q, A) up
to modifications along the divisors cut out by Q.. (Xq,) for m’ > m = m(r). Using the @-action,
modifications of D7 are determined by the modification at @,,(Xq,) which is recorded as the
[ g-lattice D5 (DY) inside D (D). See [Fru23, Thm. 5.11] for more details. O

A.2. Almost de Rham families. We prove [EGH23| Prop. 5.3.27]. We need to write the proof
here because some constructions in the proof are used for the main theorem.

Let K/Q, be a local field, A be an affinoid algebra over L. We fix an embedding 7 : K —
L C A. A T'k-representation Dgff’f;x of rank n with coefficients in A ® ¢ K, is a finite projective
(A®K K)[[t]]-module of rank n with a continuous semilinear action of I'g, where I' acts on K,
by the Galois action and on t via the cyclotomic character. Write Dgérj' 4= Dgilf’; /t. Asin [Fon04]

Prop. 3.7], differentiate the I'-action, we can obtain a connection V on Dgflé’tl = l'glk Dgfg:; Jtk

which is the Sen operator after modulo t. We say that Dgilf’z is almost de Rham of weights h =
(h1,-+ ,hyn) € Z" hy < --- < hy, if all the Sen polynomial of the specialization DgéjT is equal to
;= (T —h;) for any = € Sp(A). Write Dy , = Dgilf”tl[%]. Denote by &,,, 4 = (AQk K,,)[[t]]. Let
Reme, LT K )h be the groupoid of almost de Rham semilinear I'g-representations over projective
S, a-modules of weight h. For m/ > m, the tensor product — ®k,, K,y induces a functor

Repeva (FK)h — Reme/,A(FK)h'

Definition A.4. Write S 4 = (A @k Koo)[[t]]-
(1) Define the groupoid Repg_ ,(I'x)n = lim Repg,, ,(I'x)n. Objects of Repg__ , (I'k)n
consist of representations D", € Repg, ,(I'k)n for some m identified with Dg?f’; RK,,
K}, € Repg ,  ()n for all m’ > m. And for Dyi";" € Reps_, , (Tic)n,

m+ pm Ay m’ 4+ ,m"+
HomRepr A(FK)h(Ddif,A’Ddif,A )= hﬂ HomRemeN A(FK)h(Ddif,A ’Ddif,A )
’ m'’ >m,m/’ ’
m'’+ m,+ 'om! 4+ "om/ +
where Dy;e s := Dgi¢ 4 @K,y K, Dip 4™ = Dyig 4 @k, Ko
(2) For Dt € Repg, ,(I'k)n, we say that m is large enough if the action of I'x, on
Dgfl;tl /t is analytic, namely for any v € I'k,, the action of 7 is given by the convergent

series exp (log(e(7))V) = Yoy w.

1= 4!
For any Dg?f’; € Repg,, , (I'k)n, there exists always m’ > m such that m” is large enough for

Dg?;’: for any m” > m’ (such that the series log(yk,,,) in Endax,x,, (Dg};j /t) converges and
vk, = exp(log(vk,,)), cf. [KPX14, Prop. 2.2.14]).

We take G' = GL,,;;, and P, a standard parabolic subgroup of G' such that the Weyl group of
the Levi of P}, is the stabilizer of h in S, as in Let (gn/G){(A) be the groupoid of triples
(Dpar.a,va,Fil*Dygr.a) where Dpqr a is a finite projective A-module of rank n, Fil*Dy,qgr 4
is a decreasing filtration of projective sub-A-modules of type h as in Definition and vy €
Enda(Dpar,4) is a nilpotent endomorphism which keeps the filtration.

We define the functor Dpqr : Repg __ , (Tx)n — (8n/G)5 (A).
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Definition A.5. Let log(¢) be the formal variable such that v.log(t) = log(e(y))+log(t) for v € T
and let the operator v4 act on &,, 4[log(t)] as a &,, 4-linear derivative such that v4(log(t)) = —1.

(1) For Dgilf’:; € Repg,, ,(I'x)n such that m is large enough, define the A-module with a
filtration

Dypar(Diiis) = Dpar(Die 1) := (D 4 @, 1 Sm,alog(®)) <,
Fil' Dpar (D) i= (' Digii &y @6, 4 S allog(t)])"
for i € Z, equipped with an A-linear operator v4 induced by the derivative v4 on &,, 4[log(t)].

(2) Given (Dde,A7 va, Fﬂ.Dde,A) c (ah/G)é\(A)7 we let

Dt (Dpar.a,va) := (Dpar,a ®4 S A[ [log(#)])"~=°
and
Dt (Dpar,a, va, Fil® Dyar,a) Z Fil' Dpar,a @4t~ G, allog(t)])"4=°
i€Z
be &,,,4-modules equipped with actions of I'k.
Proposition A.6. The functors Dyar(—), Diji (=) are well defined and the following statements
hold.
(1) If m is large enough for Dg}g:; € Repg,, , (' )n in the sense of Deﬁm’tion then the
natural map
) Fil'Dpar (DY, - 1 DY, 1
PpdR,m * Z 1 de( dif’A) ®at 6771714[ Og(t)] - dif, A ®6m,A 67”714[ Og(t)]
i€Z
is an isomorphism and induces an isomorphism in Reps,, 4 (Tk)n:

DT (Dpar(Digii ), va, Fil* Dpar (D)) ~ Dty
(2) The functors Dpar(—) and Di* (=) induce an equivalence of groupoids Repg ,(I'k)n =~
(gn/G){(A). Moreover, the equivalence commutes with arbitrary base change.
Proof. Step 1. We show that the functor Dg}f(f) is well-defined. Suppose that
(Dpar.a;va, Fil®Dpar,a) € (8n/G)o (A)
Note that DJ%(Dpar,a,va) = (Dpdr,a ®a Gm,A[log(t)])"A:O[%]. We show that (Dpar,a ®4a
S allog(t)])¥4=0 is an almost de Rham T'k-representation of weight 0. First,
A(3 @ 10g(t)) = 3 (va(w) log(t)’ — za(i + 1 log(t)) = 0
>0 i>0

for x; € Dpar,a ®4 G 4 if and only if 2,41 = H%Z/A(xi) for ¢ > 0. Since v4 is nilpotent on
Dpar ®4 G, 4, We have an identification

Dpar,a ®4 Gpa >~ (Dde A®A Gy, A[lOg(t)])VA:O
T — Z fz/A x) log(t)
i>0 !

as &, a-modules (but not I'kx-equivariantly). Under this identification, the connection V on
(Dpar, a4 ®4 Sy allog(t)])"4=% corresponds to V + v4 on Dpar,a @4 Gpoa: V(Y z;log(t)!) =
S (V) + (i + Daigr) log(t)' = Y, (V(;) + va(w;))log(t)” where vy is linear for G, 4 and V
kills Dpgr,a. Since vy is nilpotent, the Sen weights are pointwisely all zero.

Same argument shows that

D$£+(Dde,A, va,Fil*Dpar, a) ~ Z Fil'Dyar.a @4t 'Gpa
i
as an &,, a-module. Since Fil®*Dy4r 4 has projective graded pieces, we may choose a splitting

Dpar,a = D1 @® Dy -+ @ Dy where 0 # D; = Fil* Dygr a/Fil" "' Dygg 4 and ky > -+ > k, such
that {—ky,---,—ks} ={h1, - ,hn} as sets. Then

D (Dpar sy va, Fil* Dparoa) = Dy @4t "G, 4@ - @ Dy @4t "G, a
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is projective of rank n over &,,, 4 of weights h. If m’ > m, by the above description, we see

Do (Dpar,a, va, Fil* Dpar,a) = DT (Dpar.a, va, Fil* Dpar a) @k, Ko
Hence the image in Repg__ , (I'x)n is independent of m.

Step 2. Take Ddlf s RepG L(Cx)n C Repg__ , (I'kx)n such that m is large enough. We show
that (Dde(Dg}f,t‘), I/A,Fll.Dde(DgILf’t‘)) (gn/G){(A) and is independent of m.

Recall Dg’én)A = Ddlf A/t Consider the I' g-representation tsz nA- There is a canonical T'g-
decomposition Dgy, 4 = ©;_1 D&, a{Vsen = —ki} according to the generalized eigenvalues of
Vsen Where each D’S"en,A{Vsen = —k;} is projective over A ® g K, of rank m;.

By Lemma each (t'Dg., 4 ®k,, Km [log(¢)])V'x is finite projective over A of rank the mul-
tiplicity of —¢ in h and the map
(A1) Diezt™" (' Dion 4 Vs, Km[log(O)])'™ @ Km[log(t)] = Dy 4 ®k,, Km[log(t)]

is an isomorphism of T'k-representations over (A @ K, )[log(t)]. Set
griDde(DS?f’Z) (t’ Ddlf A D64 6m7A[log(t)])FK/(tl+1Ddlf % ©6,, 4 S allog(t)])x.
There is an injection for all ¢
g’ Dpar (Dt ) < (t' Dty 4 ©k,, Ko [log(t)])"*

which we claim is an isomorphism.
Suppose that v € D/, ;4 with image v € t' D, 4 such that

0 i

> CL Vi @) og(t)' € (# DG 1 O, Knllon())

i=0
Take a < b € Z such that i, hy,--- by € [a, b] In the beginning of the proof of [Wu2ll, Prop.
A.10], there exists [ > 1 and maps ﬁk tb Ddlf L t_nging;,k > 1 such that By (v) — ﬁk+1(v) €
thti- “Dgfftl and (yx, — 1)!Be(x) € tht1= ng?ft‘ Moreover, [ is large enough such that (vg,,

1)! (tZD:ﬁftl t”rle+ *)0Em =Dl — 0 By the construction, B; maps tlDdlfA to tngfﬁA and

induces an automorphlsm of (Dt /e D) e =D =il independent of k. Take any v’ such
that ;. (v') has image T in t*Dg}, ,. Then ¢ := lglk Be(v') is a lift of v in (¢ Dy ) Vem ~H =01l We

get that V acts nilpotently on o and Zfoo ;) Vi(9)log(t) € (tiDgff’z ®K,, Kmllog(t)])Txm (cf.

the proof of [Wu2ll Lem. A.2]). We conclude that the map (tlDGllf " 06,4 O, allog(t)]) Km —
(tiDgrén7A ®k,, Kmnllog(t)])I'xm is surjective. Take I -invariants we see

gr' Dpar (Dt y) = (' Doy a4 @, Kom[log(t)])'*

Thus Dde(Dg?ftA) equipped with the filtration FiliDde(Dgilf’;) = (tiDgilf’t\@Gm’AGm’A [log(t)])F'=
has type h (we use that extensions of projective modules are still projective). And if m’ > m,
griDde(DgiLf’;) = griDde(Dg?;’JAf) for all i by Lemma Hence the functor Dpgr(—) is inde-
pendent of large enough m.

Step 3. We show that the functors induce an equivalence of categories. We first show that the
map ppdr,m in (1) is an isomorphism. By Step 1, both sides are finite projective over &,, a[log(t)].
We may choose a splitting of the filtration Fil'Dde(Dg?f’:Z) with graded pieces identified with
(t'Dg, 4 @k, Knllog(t)])' <. Modulo #, ppar,m coincides with the isomorphism , which is
an injection. We get that ppdr,m is an injection itself (since the source is t-adically separated). To
see the surjectivity, we only need to show that v = 0 part of the lefthand side Dg;bf’; is contained
in the image. The v = 0 part of the righthand side, which is a projective &,, 4-module, admits an
explicit description in terms of gr‘Dde(Dg?f’j;‘) by Step 1. Modulo ¢, the map between v = 0 part
is given by the v = 0 part of 7 the surjectivity follows. This also shows that the map Dpqr(—)

is essentially surjective. By the definition of the groupoid Repg__ , (I'k)n, Hom(DgiLf’tl, D;’fflj) =

hﬂm” Hom(DgiLf”Jf4 ®K,, Km, D;’};:X ®k, , Kmr). To show fully faithfulness, we only need to show
that for m large enough, the map Endge, A(FK)h(Dg?f):Z) — End(fg»h/G)@(A)(Dde(Dgilg,;)) is an

isomorphism. The map is an injection by taking v = 0 part of the canonical isomorphism ppdr,m-
The surjectivity follows similarly using ppdr,m.-



38 ZHIXIANG WU

Step 4. Assume that Sp(B) — Sp(4) is a morphism of affinoids. We need to show that for
m large enough, the natural map Fil* Dde(DZﬂf W) ®a B — Fil' Dde(Ddlf Y ®6&,, 4 Gm,B) is an
isomorphism. Both sides are finite projective B- modules of the same rank, we can reduce to show
that griDde(Dg?ng) ®a B — griDde(DzﬁgtA ®6,, .4 Sm,B) is an isomorphism for all i. This
follows from the proof of Lemma (see also [Bell5l §3]). O

Lemma A.7. Let Dg;, , be a semilinear I -representation over a finite projective A Qg K, -
module of rank n and with Sen weights pointwisely 0 such that m is large enough as in Definition
. Then for i # 0, we have (tiDgémO Rk, Koo[log(t))'= =0, and the map

(Déen0 ®K,, Km[log(t))'* @k K [log(t)] = D&t o @k, Km[log(t)]

is an isomorphism of T rc-representations. Moreover, for m’ > m, (Dg,, , ®k,, K, [log(t))'s =
(D&t 0 k., Ko [log(t)]) %

Proof. Weights zero means that the Sen operator V acts nilpotently on Dg;,, by Lemma Since
m is large enough, we have Dg;, o ~ (Dgén,o Rk, Kn[log(t)])'xm = (Dé"emo Rk, Kn[log(t)])V=,,
cf. [Wu2ll Lem. A.2]. Actually, we have Dg = D&, o{7k,, = 1} and an identification of
A Qg K,,-modules

F: Dénen,O = (Dénen,o ®Km K’m [log( FK"L

log(t)".

We show that the natural I' x-map
psenm * (Dien 0 Ok, Kmllog(t)])" " @k, Kinllog(t)] = Dty o @r,, Km[log(t)]

is an isomorphism. Since F : V(z) — 32 ¢ ZP Vitl(z)log(t)! and V is nilpotent, one can verify
that the map psen,m i a surjection by a decreasing induction: for any = € Dgg, 4 and 7, we have
V/(x) ® 1 is in the image of PSen,m for all j > i. To show the injectivity, consider the A ® x K-
linear derivation of v on the two sides: v(log(¢)) = —1. Under the identification F', v corresponds
to Von Dg, o. The map psen,m induces an isomorphism on v = 0 part: v(3_,; F(x;)log(t)") = 0

if and only if (i + 1)z;4+1 = V(z;) and in this case we have

pronn(32 Fle) o) = 3 C o o tos(0 #0
i+j=k
F(z;)log(t)! # 0. Let i be the

if 2o # 0. Now suppose that pgenm(z) = 0 for some z = ),
~1(x)) = 0 which forces v*~1(x) = 0,

minimal integer such that v*(z) = 0. Then i > 1 and pgen,m (V*
contradiction! Hence pgen,m is an isomorphism.

Finally, by Galois descent, we have (Dg., (® ., Km[log(t)])*m = (Dg., (@, Km[log(t))'* @k
K, as subspaces of Dg ; ®k,, Ky[log(t)]. And for m’ > m, we have an isomorphism

(Dien 0 @, Kmllog(t))'™ @ K llog(t)] = Doy 0 @xc,,, K [log(t)].

Taking 'k ,-invariants, we see (D, o ®k,, Km’ [log(t)])FKm/ = (D& @k, Km[log(t V=
(Dgén,() ®k,, Knllogt))'* @k K. Taking T k-invariants we get (Dg}en,o ®K,, Km/ [log(t)])FK =
(Dgen o @k, Km[log(t)])7 <. O

APPENDIX B. GAGA AND FORMAL FUNCTIONS

We consider formal completions of rigid spaces and coherent modules on these spaces.

Definition B.1. Let X be a rigid space over L and let Z be a coherent sheaf of ideals of Ox. Let X,
be the analytic closed subspace of X defined by Z™. The formal completion of X along X;, denoted
by X”, is the ringed site (X1, Ox) which has the same underlying Grothendieck topological space
as X1 and the structure sheaf Oxn := l&nn Ox,,.

The space above should be considered as a formal rigid analytic space, except that we will ignore
the topology on the sheaf of the topological rings Oxn.

We consider affinoid cases first. In the following, let A be an affinoid algebra over a p-adic
field L and let I C A be an ideal. Let 9" = lim 9, = lim Sp(A/I™) be the formal completion
of 9 = Sp(A) along Sp(A/I). For an affinoid open subspace Sp(B) C Sp(A), Oy, (Sp(B/I)) =
B®aA/I" = B/I" and Oy~ (B/I) = B" := lim B/I".
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Lemma B.2. An admissible open subset of Sp(A/I) admits a covering by open affinoids of the
form Sp(B/I) for affinoid opens Sp(B) C Sp(A).

Proof. A rational subdomain of Sp(A/I) has the form Sp((A/I){z1, - ,zn)/ (19— f1, -, Tng —
fn)) for some f;,g € A/I such that f;, g generate the unit ideal of A/I. Take lifts fi,gin A and
add possibly some fnﬂ, e ,fnJrk € I, we see it has the form Sp(B/I) for a rational subdomain
Sp(B) C Sp(A) where B = A(x1, -, Znsk) /(217 — f1,-  +Znskd — frsk). Then the statement

follows from that rational subdomains form a basis for the Grothendieck topology [Bosl4l Cor.
4.2/12]. |

Definition B.3. An Oyr-module F on the I-adic formal affinoid space 9" is coherent if F has
the form F = Y&n]:n where F;, are coherent Oy, -modules such that Fo /It = F, 1.

Suppose that F' is a finitely generated A”-module (a coherent Ogpec(ary-module), we can as-
sociate a coherent Og~-module F = lim F;, where F,, is the coherent Oy, -module attached to
F/I"™. The following lemma is an analogue of [Gro60, Prop. 10.10.5, Ch.I].

Lemma B.4. Let 9" be as above.

(1) Let F = lim F, be a coherent Oyn-module. Then we have FQN) = Jim Fn(Dr) and
RT(YPN, F) =0 fori > 0. Moreover, F,, is uniquely determined by F := F(D") which is
a finitely generated A™-module and F,(P") = F/I™. And for any affinoid open Sp(B) C
Sp(A) which defines an affinoid open Sp(B/I) C Sp(A/I), we have F(Sp(B/I)) = F ®an
B".

(2) The functor F — F from the category of finitely generated O(Y")-modules to the category
of coherent Oy~ -modules induces an equivalence of abelian categories.

(8) An Oyn-module F is coherent if and only if it is coherent in the sense of [Sta24l Tag
03DK].

Proof. (1) Since the maps F,, — F,,_1 are surjective, we have F = R im Fn. Since ” is affinoid,
the maps Fp,(9") = Fn_1(Y”") are surjective. Hence RT'(P", F) = hm Fn(Yn) by [Sta2d, Tag
0D60]. By [Sta24] Tag 09B8|, we have F(P")/I" = F,(P") and F(P") is finitely generated by
Nakayama lemma, see [Sta24] Tag 087W]. Finally, since F, is coherent over 9),, and Sp(B/I™) is an
affinoid open in Sp(A/I"™), Fn(Sp(B/I")) = Fo(A/I") @/ B/I" = F/I" ® gy» B/I". Taking
inverse limit F(Sp(B/I™)) = im F'®an B/I™ = F ® g4n B” using that F is finitely generated over
AN,

(2) The essential surjectivity is by (1). We need verify fully faithfulness. Let F, G be two finitely
generated A”-modules and let F, G be the corresponding coherent sheaves. Then Homgn (F, G) =
l'gln Homy /rn (F/I",G/I™) = @n Homo,,, (Fn,Gn) by [Sta24l Tag OEHN]. Apply this argument
for the formal affinoid subspace Sp(B/I) of 9", we get

Homo,,» (F,G)(Sp(B/I)) = Homp~ (F(B"),G(B")) = lim Homo,, » (Fu, Gn)(SP(B/1)).
n
Hence Homo,, (F,9) = lim Homo, (Fn:Gn). Taking global sections we see Homo, , (F,G) =
Homan (F,G). This proves the equivalence. See [Sta24l Tag 087X] for the structure of abelian
categories.

(3) The proof is the same as for [Gro60, Prop. 10.10.5, Ch.I], using that affinoid algebras as

well as their completions are Noetherian. O

Let B be an affinoid algebra over L. Write S = Spec(B) and & = Sp(B). Suppose that
f: X — Spec(B) is a projective scheme over S and let Xg be its relative analytification over &
which is equipped with a map of locally ringed spaces ¢ : Xg — Xg (see [Con06l Exa. 2.2.11, Exa.
2.3.11]). The following result was firstly proved in [Kop74]. See also [Con06l, Exa. 3.2.6] or [Poil0l
Ann. A].

Theorem B.5 (Relative GAGA theorem). In the above situation, the functor F > *F induces
an equivalence of categories of coherent Ox,-modules and coherent Ox-modules. And for any
coherent Ox,-module F on Xg, the natural morphism H'(Xs,F) — H'(Xe,*F) of finite B-
modules is an isomorphism for all i > 0.

We go to the formal setting. Suppose that fy : X — Y is a projective scheme over Y = Spec(A).
Let Xy, = X xy Y, where Y,, = Spec(4/I"™). We form relative analytification Xy, for Xy, over


https://stacks.math.columbia.edu/tag/03DK
https://stacks.math.columbia.edu/tag/03DK
https://stacks.math.columbia.edu/tag/0D60
https://stacks.math.columbia.edu/tag/0D60
https://stacks.math.columbia.edu/tag/09B8
https://stacks.math.columbia.edu/tag/087W
https://stacks.math.columbia.edu/tag/0EHN
https://stacks.math.columbia.edu/tag/087X
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Spec(A/I™) with proper maps Xy, — 2, as well as Xog — 2. Then Xyr = lim = Xy, is the
formal completion of Xy along the closed subspace Xyg),. We can define the category of coherent
Ox,,,-modules as in Definition which is equivalent to the usual definition on a ringed site by
Lemma [B.4] (cf. [Gro60, Thm. 10.11.3, Ch.I]).

We also have a formal scheme Xgp¢an) = hﬂn Xy, and a scheme Xgpec(an) the base change of
Xy = X to Spec(A”"). There are natural morphisms of ringed sites Xg» — Xgpr(an) = Xspec(an)-
Write fy, : X9, = 2n. The following corollary generalizes Lemma @

Corollary B.6. Let Xy, Xgpran), Xspec(an) be as above.

(1) The category of coherent OX@A -modules is equivalent to the category of coherent modules
on the formal scheme Xgpeany (in the sense of [Sta24, Tag 089N|). Both categories are
equivalent to the category of coherent (’)XSPSC<AA)—m0dules on the scheme Xgpec(an)-

(2) Let F = fm F, be a coherent module on Xy~ and Fan be the corresponding coherent
module on Xgpec(any by (1). Then for all i > 0, Rifyr o F = @n R'fy, «Fn and is the

coherent Oy~ -module attached to the finite A™-module Hi(XSpeC(A/\),‘FA/\).

Proof. (1) The first equivalence is an application of Theorem above for each Xy, and by the
definition of the category of coherent modules. The equivalence of coherent modules on Xgpg(an)
and Xgpec(an) is Grothendieck’s existence theorem [Sta24) Tag 0SBE.

(2) Since Rfyn F = Rf;DA7*R£i£1n Fn = R@n Rf2A7*fn, we have R’ fyn  F = @n R'fy, «Fn
by [Sta24, Tag 0D60] for i > 0 provided that R* im R'fy, «Fn =0 foralli. Weneed to show that
the inverse system R'fy, .F;, is Mittag-Leffler (cf. [Emm96]). Write (F4/1n), for the coherent
modules over Xgpeany by the equivalence in (1). Then (Fa/rn)n = (Far/I™),. Under the equiv-
alence in Theorem Rify, «Fn = R'fy, «Far as coherent sheaves associated to the same
A/I"-module H(Xy, , Fa ) = H (Xspec(anys Fanr /I™). Apply [Sta24, Tag 020B] for the proper
morphism Xgpecany — Spec(A”) and the sheaf Fn, we see the system (R'fy, «Fn)n is Mittag-
Leffler. By [Sta24) Tag 087U|, H*(Xgpec(an), Far) = @n H'(Xy,,Fn) as finite A”-modules.

Hence R!fynr F(P") = Jm Rify, «Fn(@Dn) = H (Xspec(an), Far) as A"-modules. For an
affinoid subdomain Sp(B) C Sp(A), a similar statement holds replacing A" by B”. The ring map
A — Bis flat [Bosl4l Cor. 4.1/5]. Hence the maps A/I"™ — B/I"™ and A" — B” are flat by Lemma
below. By the flat base change, we have H'(Xgyec(pry, FBr) = H' (Xspec(an), Far) @an B
Thus R'fyn «F = lim R'fy, .Fn, as an Ogpn-module, is the coherent Oyn-module attached to
the finite A*-module H*(Xgpec(an), Far) (see Lemma . O

We used frequently the following lemma.
Lemma B.7. Let A be a ring and let I be an ideal of A. Suppose that (M,),, is an inverse system
of A-modules such that M,, is a flat A/I™-module for any n. Let M := @n M, .

(1) Suppose that A is Noetherian and that the transition maps M1 — M, are surjective for
all m, then M is flat over A and Q @4 M = @1” Q ®4 M, for any finite A-module Q.

(2) Suppose that My 1 ®@a/m+r AJ/I" = M, and M, is finite flat over A/I™ for all n. If
My s finite projective over A/I, then M is finite projective over A" = yLnA/I" and
M @an AJI™ = M, for all n.

Proof. (1) is [Sta24] Tag 0912]. (2) follows from [Sta24l Tag 0D4B]. O
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