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Abstract. We study “change of weights” maps between loci of the stack of (φ,Γ)-modules

over the Robba ring with integral Hodge-Tate-Sen weights. We show that in the GL2(Qp)
case these maps can realize translations of (φ,Γ)-modules geometrically. The motivation is to

investigate translations of locally analytic representations under the categorical p-adic Langlands

correspondence.
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1. Introduction

In this introduction we consider translations of locally analytic representations of p-adic Lie
groups from the point of view of the categorical p-adic Langlands program proposed by Emerton-
Gee-Hellmann in [EGH23]. We will give hints for the categorical story in the GL2(Qp) case by
realizing Ding’s result in [Din23] on translations of (φ,Γ)-modules in arithmetic families.

1.1. Translations for locally analytic representations. Translation is a fundamental tool to
study modules over a reductive lie algebra g, an operation changing infinitesimal characters. Let us
take g = gln, n ≥ 2 to be the Lie algebra of GLn over a p-adic coefficient field L for a prime number
p with the Cartan subalgebra t of the diagonal matrices. Let U(g) be the universal enveloping
algebra and Z(g) be the center of U(g). Via the Harish-Chandra isomorphism an (infinitesimal)
character χλ : Z(g) → L is determined by a weight λ = (λ1, · · · , λn) ∈ t∗. We can consider the
category Mod(U(g))χλ

of U(g)-modules which are generalized eigenspaces for the action of Z(g)
of eigenvalues given by χλ. For another µ ∈ t∗ such that λ − µ ∈ Zn is integral, the translation
operator gives a functor

Tµ
λ : Mod(U(g))χλ

→ Mod(U(g))χµ
.

If λ and µ are both dominant integral and have the same regularity (in the sense of the stabilizers
in the Weyl group for the dot action), Tµ

λ induces an equivalence of categories. While translations
between regular and non-regular characters (into and out of the walls) are more interesting.

Locally analytic representations of a p-adic Lie group G, say G = GLn(Qp), are naturally g-
modules by differentiating the G-actions. Under p-adic Langlands correspondence, infinitesimal
characters of locally analytic representations correspond to generalized Hodge-Tate(-Sen) weights
of the associated p-adic Galois representations, cf. [DPS20]. Translations for locally analytic rep-
resentations were studied by Jena-Lahiri-Strauch in [JLS21]. If a locally analytic representation π
is in Mod(U(g))χλ

, then its translation Tµ
λ π is still a locally analytic representation, with gener-

alized infinitesimal character χµ. It is then extremely interesting to investigate how translations
intertwine with the Langlands correspondence. The operations that change weights were already
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observed by Colmez in [Col18]. A more systematic study was carried out by Ding in [Din23], based
on Colmez’s construction D 7→ D♮ ⊠ P1 of p-adic local Langlands [Col10, Col16] from rank two
(φ,Γ)-modules over the Robba ring to locally analytic representations of GL2(Qp). Ding’s idea is
to translate (φ,Γ)-modules firstly which can be equipped with g-actions using Colmez’s method
(by the infinitesimal action of G on D = D ⊠ Zp ⊂ D ⊠ P1). Ding proposed recently in [Din24]
conjectures to study p-adic Langlands correspondences for general GLn via translation functors.

1.2. Categorical p-adic Langlands conjecture. Let RigL be the category of rigid analytic
spaces over L. Emerton-Gee-Hellmann consider in [EGH23] the moduli stack Xn (over RigL) of
(φ,Γ)-modules of rank n over the Robba ring, which should be viewed as the p-adic analytic
version of the stack of Langlands parameters for GLn(Qp). Let D

b
f.p(an.G) be the derived category

of locally analytic representations of G = GLn(Qp) (with conjectural finiteness condition discussed
in [EGH23, §6.2]) and let Db

Coh(Xn) be the derived category of coherent sheaves on Xn. The
analytic version of the categorical p-adic Langlands correspondence predicts the existence of a
functor

Arig
G : Db

f.p(an.G)→ Db
Coh(Xn)

which should satisfy various properties, particularly including the compatibility between infinites-
imal characters and Hodge-Tate-Sen weights.

Let h = (h1, · · · , hn) ∈ Zn, h1 ≤ · · · ≤ hn be fixed integral Sen weights and λ = λh :=
(hn − (n − 1), · · · , hi − (i − 1), · · · , h1) be the corresponding (automorphic) weight of t. Let
Db

f.p(an.G)χλ
⊂ Db

f.p(an.G) be the full subcategory consisting of representations with generalized

infinitesimal character χλ. We consider the substack (Xn)
∧
h (appeared in [EGH23, §5.3.22]), the

formal completion of Xn along the weight h locus. For an affinoid algebra A, the A-value of (Xn)
∧
h

is the groupoid of (φ,Γ)-modules DA of rank n over Sp(A) such that for any point x ∈ Sp(A), the

specialization DA ⊗A k(x) has Sen weights h. Then Arig
G should restrict to a functor:

Arig
G : Db

f.p(an.G)χλ
→ Db

Coh((Xn)
∧
h).

For different integral weights λh, λh′ , the composite of Arig
G and the translation functor T

λh′
λh

:

Db
f.p(an.G)χλh

→ Db
f.p(an.G)χλ

h′
translates sheaves on (Xn)

∧
h to (Xn)

∧
h′ . If one believes in an

ultimate equivalence of categories statement of the categorical p-adic Langlands correspondence
as Fargues-Scholze (see [EGH23, Rem. 1.4.6]), it is then natural to ask if there exists a morphism
between spaces (Xn)

∧
h and (Xn)

∧
h′ (that induces translations of sheaves).

1.3. Change of weights. The functor Arig
G is in conjectural and the geometric properties of Xn

are largely unknown. However, the answer to the question above is positive. We suppose that h is
regular for simplicity1 and let 0 = (0, · · · , 0) be the zero weight. Let B be the Borel subgroup of
upper triangular matrices of GLn with Lie algebra b. Consider the Grothendieck resolution

f : g̃ = GLn ×B b = {(ν, gB) ∈ g×GLn/B | Ad(g−1)(ν) ∈ b} → g, (ν, gB) 7→ ν

where Ad denotes the adjoint action.

Proposition 1.1 (Proposition 3.12). There exists a (change of weights) morphism of stacks

(1.1) fh : (Xn)
∧
h → (Xn)

∧
0

such that the following commutative diagram of stacks over RigL

(1.2)

(Xn)
∧
h g̃/GLn

(Xn)
∧
0 g/GLn

DpdR

fh f

DpdR

is Cartesian.

The morphisms DpdR are the local model maps defined in loc. cit. It firstly sends a (φ,Γ)-

module D to the associated B+
dR-representation W+

dR(D) of Gal(Qp/Qp) which, using Fontaine’s
classification, gives a rank n bundle DpdR(D) with a (Hodge) filtration Fil•DpdR(D) stabilized
under a nilpotent linear endomorphism ν. The filtration depends on the regularity of Sen weights
and is parametrized by the stack ∗/P = (GLn/P )/GLn where GLn/P is a flag variety and P = B,

1Namely h1 < · · · < hn. Proposition 1.1 works for general GLn(K) and non-regular h with suitable modifications.
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resp. P = GLn, in the case of weight h, resp. 0. In the language of B-pairs of Berger [Ber08a],
the map fh, already pointwisely described in [Din24, Lem. 2.1], sends the B-pair (We,W

+
dR)

attached to D to (We,W
+
dR,0) where W+

dR,0 is the unique Gal(Qp/Qp)-invariant B
+
dR-lattice inside

WdR(D) = W+
dR(D)[ 1t ] of weight 0 associated to the trivial filtration of DpdR(D). The proof of the

isomorphism
(Xn)

∧
h ≃ (Xn)

∧
0 ×g/GLn

g̃/GLn

is a simple combination of the known family versions of the equivalence between (φ,Γ)-modules
and B-pairs and the classification of B+

dR-representations with integral weights (see Appendix A).

Remark 1.2. The condition for a (φ,Γ)-moduleD with integral weights being de Rham is equivalent
to the vanishing of the nilpotent endomorphism ν on DpdR(D) = DdR(D). Let XDE

n be the stack
of rank n de Rham (φ,Γ)-modules of weight zero (so called p-adic differential equations). The
restriction of the diagram (1.2) to ν = 0 locus is

XDE
n ×∗/GLn

∗/B ∗/B = (GLn/B)/GLn

XDE
n ∗/GLn.

fh f

Thus XDE
n ×∗/GLn

∗/B is isomorphic to the stack of de Rham (φ,Γ)-modules of weight h. On the
other hand, using Berger’s equivalence [Ber08b], this stack is locally isomorphic to WDn×∗/GLn

∗/B
([EGH23, Thm. 5.2.4]) where WDn is the analytification of the stack of Weil-Deligne representa-
tions of rank n.

An immediate consequence of Proposition 1.1 is the existence of isomorphisms between loci
of Xn with different regular Hodge-Tate-Sen weights. We will use fh to realize translations of
(φ,Γ)-modules in GL2(Qp)-case and then discuss a general speculation.

1.4. Geometric translations of (φ,Γ)-modules. Now we focus on the case G = GL2(Qp) where
we have Colmez’s construction. The main result of this paper can only be stated and proved in this
case. Following Colmez, there is a unique way to make a (φ,Γ)-module DA over an affinoid Sp(A)
a g-module so that Z(g) acts via a character determined by the Sen weights of DA, cf. [Dos12].
If DA ∈ (X2)

∧
h(A) for some fixed weight h with associate λ = λh ∈ t∗, then one can talk about

the translation Tµ
λDA to another integral weight as g-modules. Ding’s method shows that Tµ

λDA

is still a (φ,Γ)-module. The following is our main theorem.

Theorem 1.3 (Theorem 5.15). Suppose h = (h1, h2) ∈ Z2, h1 < h2, λ = λh, µ = λ0 = (−1, 0).
Let D(X2)∧h

(resp. D(X2)∧0
) be the restriction of the universal (φ,Γ)-module on X2 to (X2)

∧
h (resp.

to (X2)
∧
0 ). Then the following statements are true locally on affinoid charts of X2 (namely on any

Sp(A) with a formally smooth map Sp(A)→ X2).

(1) There exists an isomorphism

Tµ
λD(X2)∧h

≃ f∗
hD(X2)∧0

of (φ,Γ)-modules of rank two which induces the map fh : (X2)
∧
h → (X2)

∧
0 .

(2) There exists an isomorphism

Tλ
µD(X2)∧0

≃ Rfh,∗D(X2)∧h

of (φ,Γ)-modules of rank four and in degree 0 on (X2)
∧
0 .

Certainly, all objects in the above theorem need proper definitions. The theorem will be stated
and proved without the language of stacks. For a chart Sp(A) → X2 with DA the pullback of
the universal (φ,Γ)-module, we construct the space Sp(A)∧ = Sp(A) ×X2

(X2)
∧
0 as what should

be called an affinoid formal rigid space. Using Proposition 1.1, we only need to prove the results
for the map f−1

h (Sp(A)∧) = Sp(A)∧ ×g/GL2
g̃/GL2 → Sp(A)∧ between formal rigid spaces and

(φ,Γ)-modules over these spaces. Fortunately, the map is proper and the cohomologies can be
studied via GAGA theorems (see Appendix B).

The key of the proof is the geometric properties of the Grothendieck resolution f : g̃ → g. For
example, Rf∗Og̃ concentrates in degree 0 and is locally free of rank two over Og, which is basically
the reason that Rfh,∗D(X2)∧h

has rank four and concentrates in degree 0. Another vital input is

the flatness of the local model map DpdR (to use flat base change). We can prove the flatness of
DpdR in GL2(Qp) case (§3.4) and we expect it is always flat for other G.
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1.5. Speculation. Finally, we explain the motivation of Theorem 1.3. For U(g)-modules with
a generalized infinitesimal character, translation functors can be realized geometrically using
Beilinson-Bernstein localization, cf. [BG99]. A better approach for translations (into and out
of the wall) is to consider singular localizations which send Mod(U(g))χµ for non-regular χµ to
some D-modules on corresponding partial flag varieties G/P [BK15, BMR06]. Then translation
functors after localization can be realized using pushforward and pullback along the maps between
flag varieties like G/B → G/P , see [BK15, §6] and more similarly [BMR06, Lem. 2.2.5].

The functor Arig
G in §1.2 is expected to be certain localization, of the form ([EGH23, Rem. 6.2.9])

π 7→ L∞⊗̂
L
D(G)π

where D(G) is the distribution algebra of G and L∞ plays the role of the sheaf of differential
operators on Xn. As in Proposition 1.1, we fix a regular Hodge-Tate weight h (resp. non-regular
weight 0) and let χλ (resp. χµ) be the associated infinitesimal character. With the map (1.1), we
get a diagram of functors

Db
f.p(an.G)χλ

Db
Coh((Xn)

∧
h)

Db
f.p(an.G)χµ Db

Coh((Xn)
∧
0 ).

Arig
G

Tµ
λ

Rfh,∗

Arig
G

Tλ
µ

Lf∗
h

Question 1.4. In the above diagram, do we have Arig
G ◦T

µ
λ = Rfh,∗◦Arig

G and Arig
G ◦Tλ

µ = Lf∗
h◦A

rig
G ?

Taking account of the adjunction for translation functors, this suggests to ask whether we have
isomorphisms (where w0 denotes the longest element in the Weyl group)

T−w0µ
−w0λ

L∞|(Xn)∧h
≃ Lf∗

hL∞|(Xn)∧0
,(1.3)

T−w0λ
−w0µL∞|(Xn)∧0

≃ Rfh,∗L∞|(Xn)∧h
?(1.4)

Remark 1.5. The sheaf L∞ should be a family version of the dual of Π(D) where for a (φ,Γ)-module
D of rank n, we write Π(D) for the conjectural locally analytic representation of GLn(Qp) attached

to D via p-adic local Langlands correspondence. The expected isomorphism T−w0µ
−w0λ

L∞|(Xn)∧h
≃

Lf∗
hL∞|(Xn)∧0

is just a family (dual) version of a conjecture of Ding [Din24, Conj. 1.1, (1)]: if D

has Hodge-Tate-Sen weights h, then Tµ
λΠ(D) = Π(fh(D)).

At present, there is no construction of the sheaf L∞ for n ≥ 2. In the case of GL2(Qp), as in the
Banach case [EGH23, §7.3], L∞ should be the family version of Colmez’s constructionD 7→ D♮⊠P1

from (φ,Γ)-modules to D(G)-modules (up to a twist). An easier object to construct is D ⊠ P1

as only U(g)-modules, which equals to copies of (φ,Γ)-modules. The main theorem immediately
implies the following (compared with (1.3) and (1.4) up to a twist).

Corollary 1.6 (Corollary 5.24). In the notation of Theorem 1.3, the following isomorphisms of
sheaves of U(g)-modules hold locally on affinoid charts of X2 with suitable definitions of the objects:

Tµ
λD(X2)∧h

⊠P1 ≃ Lf∗
hD(X2)∧0

⊠P1,

Tλ
µD(X2)∧0

⊠P1 ≃ Rfh,∗D(X2)∧h
⊠P1.

Remark 1.7. In the trianguline cases, we expect that the identification of functors in Question 1.4
applying for finite slope Orlik-Strauch representations is compatible with the conjectural descrip-
tion of Arig

G (π) using local models and Bezrukavnikov’s functor in [EGH23, §6.2.25], provided the
version of loc. cit. for non-regular weights (see [Wu21] for a discussion on cycles).

Remark 1.8. Geometric translations for real local Langlands correspondence were already discussed
to some extent, cf. [ABV92, §16], [Str14], etc.

1.6. Outline. We review basics on Grothendieck-Springer resolutions in §2. In §3, we study the
change of weights maps and prove Proposition 1.1, and show that the local model map is flat in
the GL2(Qp)-case. In §4, we compute translations of (φ,Γ)-modules in families. We prove the
main theorem on geometric translations in §5. We also show in §5.3 how to recover some of Ding’s
pointwise calculation of translations from our main Theorem 1.3. In two appendices A and B, we
collect facts on families of (φ,Γ)-modules over the Robba rings and formal rigid geometry.
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1.8. Notation. We fix a prime number p. We use L a finite extension of Qp as the coefficient
field.

Suppose that K is a p-adic local field. Let K∞ = K(µ∞) = ∪mK(µpm) be the extension of
K by adding all p-th power roots of unity, and ΓK := Gal(K∞/K). Also let Km = K(µpm) for

m ≥ 1. Let GK = Gal(Qp/K) be the absolute Galois group of K. We write Γ = ΓK if K = Qp.
Let ϵ be the cyclotomic character of GK viewed also as the character NormK/Qp

|NormK/Qp
|p of

K× where |p|p = p−1. In our convention, the cyclotomic character has Hodge-Tate weights one.
We follow the notation of (φ,Γ)-modules in [KPX14]. IfX is a rigid space, we writeRX,K for the

Robba ring of K over X [KPX14, Def. 6.2.1]. If A is an affinoid algebra, write RA,K := RSp(A),K .

We also need the Robba rings Rr
A,K and R[s,r]

A,K for 0 < s < r small enough in the sense of [KPX14,

Def. 2.2.2]. The ring R[s,r]
Qp,K

is the ring of single variable rigid analytic functions converging over

U[s,r]
K′

0
= {p−

r
p−1 ≤ |X| ≤ p−

s
p−1 } with coefficients in K ′

0 the maximal unramified subfield of K∞

and Rr
Qp,K

= lim←−s≤r
R[s,r]

Qp,K
is the functions on Ur

K′
0
= ∪0<s<rU[s,r]

K′
0
. Then R[s,r]

A,K = R[s,r]
Qp,K
⊗̂Qp

A

and Rr
A,K = lim←−s≤r

R[s,r]
A,K . The group ΓK acts on Rr

A,K and φ : Rr
A,K → R

r/p
A,K .

A (φ,ΓK)-module DA over RA,K is always the base change of a (φ,ΓK)-module Dr
A over Rr

A,K

for some r small enough: a finite projective Rr
A,K-module Dr

A equipped with an isomorphism

φ∗Dr
A = Rr/p

A,K ⊗φ,Rr
A,K

Dr
A ≃ R

r/p
A,K ⊗Rr

A,K
Dr

A and a commuting continuous semilinear action

of ΓK . Given a (φ,ΓK)-module Dr
A over Rr

A,K , we write Ds
A := Rs

A,K ⊗Rr
A,K

Dr
A, D

[s,r]
A :=

R[s,r]
A,K ⊗Rr

A,K
Dr

A, DA := RA,K ⊗Rr
A,K

Dr
A for s ≤ r. The (φ,ΓK)-cohomologies Hi

φ,γK
(DA), i =

0, 1, 2 for a (φ,ΓK)-module is defined using Herr complex as in [KPX14, Def. 2.3.3] where γK is a
fixed topological generator of ΓK modulo the torsion subgroup. And we write Homφ,γK

(−,−) for
the Hom space of (φ,ΓK)-modules. We write RA = RA,K , γ = γK , etc., if K = Qp.

Let B+
dR, BdR = B+

dR[
1
t ] be Fontaine’s de Rham period rings, where t is Fontaine’s 2πi.

For any r > 0, let m(r) be the minimal integer such that pm(r)−1[K(µp∞) : K0(µp∞)]r ≥ 1
where K0 is the maximal unramified subfield of K. The integer is taken so that there are injections
ιm : Rr

L,K ↪→ (L⊗Qp
Km)[[t]] for m ≥ m(r), see Appendix A.

For a continuous character δ : K× → Γ(X,OX)× over a rigid space X, write RX,K(δ) for the
corresponding rank one (φ,ΓK)-module over RX,K in [KPX14, Cons. 6.2.4]. If K = Qp, write
z : Q×

p ↪→ L× for the algebraic character of weight one. Recall that RL(z) = tRL.
If G = GLn over L for some n, we always take the Borel B the subgroup of upper-triangular

matrices and T the diagonal torus. We use the fraktur letter g (resp. b, resp. t) for the Lie algebra
of the group G (resp. B, resp. T ), also viewed as an affine scheme (or its analytification) over L.
Denote by Ad : G → End(g) the adjoint representation. For a Lie algebra g, denote by U(g) the
universal enveloping algebra and Z(g) the center of U(g). We write N ⊂ g for the nilpotent cone.

If X is a rigid space with x ∈ X, we write k(x) for the residue field at x. For a (φ,ΓK)-module
DX over X, we write Dx or Dk(x) for the base change to x. More generally for an affinoid algebra
A and an A-point Sp(A)→ X, write DA = DX⊗RX,K

RA,K , and similarly Dr
A = Dr

X⊗Rr
X,K
Rr

A,K ,
etc.

Let CL denote the category of commutative local Artinian L-algebras with residue field L. If
A ∈ CL, let mA be its maximal ideal.

If Z is a commutative ring, I is a finitely generated ideal of Z and M is a Z-module, then write
M [I] = {m ∈M | z.m = 0,∀z ∈ I} and M [I∞] := ∪∞i=1M [Ii]. If χ : Z → A is a surjction of rings
with kernel I and M is an A-module, write M [Z = χ] = M [I] and M{Z = χ} = M [I∞].

2. The Grothendieck-Springer resolution

In this section, we recall the basics of the Grothendieck-Springer resolution. We only consider
schemes over L for the moment.

Let G be a split reductive group over L with a Borel subgroup B and a maximal torus T . We
will write h = t for the Cartan subalgebra. We use P to denote standard parabolic subgroups
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containing B with the Lie algebra p. Write W (resp. WP ) for the Weyl group of G (resp. the Levi
of P ).

2.1. Recollection on Grothendieck-Springer resolution. For a parabolic subgroup P ⊃ B
with the Levi subgroup M containing T , consider the scheme

g̃P := G×P p ≃ {(ν, gP ) ∈ g×G/P | Ad(g−1)ν ∈ p}

and the partial Grothendieck resolution

fP : g̃P → g, (ν, gP ) 7→ ν.

We will omit the subscript P when P = B, namely write f : g̃ = g̃B → g. There is a natural map

g̃P → m//M ≃ h/WP

sending (ν, gP ) to the projection of Ad(g−1)ν ∈ p to m. The map is compatible with fP in the
sense that it induces a map gP : g̃P → g×h/W h/WP .

Lemma 2.1. Let fP , gP be as above.

(1) The morphism fP is proper and surjective, finite over greg and is finite étale of degree
|W/WP | over greg−ss. Here greg−ss ⊂ greg ⊂ g denote open subschemes of regular semisim-
ple elements and regular elements.

(2) The natural map Og×h/W h/WP
→ RgP,∗Og̃P

is an isomorphism. Moreover, the map g×h/W

h/WP → g is finite flat of rank |W/WP |.

Proof. (1) See for example [Wu21, Lem. 2.3].
(2) The isomorphism is [BK15, Lem. 3.2]. The map h/WP → h/W is flat by miracle flatness. □

We don’t really need the following lemma, but it might be helpful to keep it in mind.

Lemma 2.2. The dualizing sheaf of g̃P is trivial. And there is a canonical isomorphism f !
PF =

Lf∗
PF for any coherent Og-module F .

Proof. We follow the proof of [BK07, Lemma. 5.1.1]. Let πP : g̃P → G/P be the projection. The
canonical bundle ωg̃P

of g̃P is isomorphic to π∗
PωG/P ⊗Og̃P

ωπP
where ωπP

denotes the relative

dualizing sheaf. We know ωG/P = G×P δP where δP is the sum of all roots in the unipotent radical

u of p. Moreover, since g̃P = G×P p, ωπP
= G×P ωp. Consider the fiberation 0→ u→ p→ m→ 0.

Choosing coordinates m,u of m and u, then ωP is generated by dm ∧ du. Since ωm is trivial as a
M -representation, ωp = −δP as a P -representation. Hence ωg̃P

≃ Og̃P
.

We get f !
POg = f !

Pωg = Og̃P
. The map fP : g̃P → g is perfect, hence f !

P ≃ Lf∗
P by [Sta24, Tag

0B6U,Tag 068D]. □

2.2. Direct images of some line bundles. We need compute direct images of some line bundles
on g̃ in the G = GL2 case (Proposition 2.4). The computation will be the key for our main result
on direct images of (φ,Γ)-modules (Proposition 5.10).

Take g = gl2 = Spec(L[a, b, c, z]) where a, b, c, z are coordinates for entries of matrices(
a+ z b
c −a+ z

)
∈ g.

Take h = Spec(L[h, z]) for (z+h, z−h) ∈ h. Recall the map g : g̃→ g×h/W h where h/W = L[z, h2]

and O(h/W )→ O(g) : h2 7→ a2 + bc.

Lemma 2.3. The map f : g̃→ g is a finite étale rank two cover over greg−ss = g \ {a2 + bc = 0}
and is finite flat of degree two over greg = g \ {a = b = c = 0}. The fiber of f over 0 ∈ g is
identified with G/B and the fiber over a closed point x ∈ N \ {0} is ramified of degree 2 over the
residue field k(x).

Proof. By [BHS19, Prop. 2.1.1] or Lemma 2.1, we know the corresponding preimage g̃reg−ss (resp.
g̃reg) is finite étale (resp. finite) over greg−ss (resp. greg). Since f∗Og̃reg = Og×h/W h\{a=b=c=0}, we

see g̃reg = (g×h/W h) \ {a = b = c = 0}. The fiber over x ∈ N \ {0} ⊂ greg, which has image 0 in

h/W , is the fiber of h→ h/W over 0 whose coordinate ring is k(x)[h]/h2. □

https://stacks.math.columbia.edu/tag/0B6U
https://stacks.math.columbia.edu/tag/0B6U
https://stacks.math.columbia.edu/tag/068D
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Let π : g̃ → G/B. For k ∈ Z, we write Og̃(k) for the line bundle π∗OG/B(k) where our
convention is the standard one that OG/B(k) is ample for k ≥ 1. Let V = Oge1 ⊕ Oge2 be the
universal trivialized rank two bundle on g. The operator ν acts universally on V

ν : x1e1 + x2e2 7→ ((a+ z)x1 + bx2)e1 + (cx1 + (z − a)x2)e2

for x1, x2 ∈ Og, hence also on f∗V. By definition, ν stabilizes the following short exact sequence
which gives the universal filtration on g̃ pulled back from G/B (arising from the B-filtration of the
standard representation of GL2):

(2.1) 0→ Og̃(−1)→ f∗V → Og̃(1)→ 0.

Proposition 2.4. We write U = O(g) = L[a, b, c, z] and Ũ := O(g×h/W h) = U [h]/(h2−(a2+cb))
which is free of rank two over U .

(1) The sheaves Rf∗Og̃(−1) and Rf∗Og̃(1) concentrate in degree zero and are free of rank two
over U .

(2) Let Ṽ := V ⊗U Ũ = f∗f
∗V. The sequence of Ũ-modules below

· · · ν−(z−h)−→ Ṽ ν−(h+z)−→ Ṽ ν−(z−h)−→ Ṽ ν−(h+z)−→ · · ·

is exact. Moreover, the Ũ-module Ṽ[ν − (z ± h)] := ker(Ṽ ν−(z±h)→ Ṽ) is free of rank two

over U and (ν − (z ± h))V = (ν − (z ± h))Ṽ = Ṽ[ν − (z ∓ h)].

(3) The sequence of Ũ-modules

0→ f∗Og̃(−1)→ Ṽ → f∗Og̃(1)→ 0

is exact and identifies f∗Og̃(−1) with Ṽ[ν − (z + h)].

Proof. (1) The vanishing of higher direct images follows from the same proof for Og̃ in [BMRR08,
Prop. 3.4.1] which can be deduced from vanishing results for the Steinberg resolution case, cf.
[Bro93] or [BK07, Thm. 5.2.1]. In detail, by the projection formula, Rπ∗Og̃(i) = (Rπ∗Og̃)⊗OG/B

OG/B(i). Consider the sequence of the bundles 0 → Ñ = G ×B n → g̃ → G ×B h → 0 on
G/B where n is the nilpotent cone of b. This short exact sequence induces a filtration on π∗Og̃

with the associated graded algebra isomorphic to O(h) ⊗ OÑ (see [Har13, Ex. II.5.16]). Since
OÑ (±1) has vanishing higher cohomology, so is π∗Og̃(±1). More directly, we can take an increasing

filtration by grading on Og̃ with graded pieces the coherent sheaves G×B Symnb∗ which are finite
extensions of O(2i), i ≥ 0 and have vanishing higher cohomology even after twisting OG/B(−1).
Now we show that Rf∗Og̃(±1) are free over g. The dualizing complexes of g̃ and g are trivial by
Lemma 2.2 and f is proper. Let DGS(−) be the Grothendieck-Serre duality. We have Og̃(1) =
DGS(Og̃(−1))[−dim g] and hence Rf∗Og̃(1) = DGS(Rf∗Og̃(−1))[−dim g]. Thus Rf∗Og̃(±1) are
maximal Cohen-Macaulay sheaves, hence locally free, on g (cf. [Sta24, Tag 0DWZ,Tag 090U]).
The (generic) rank is two by Lemma 2.3.

(2) The composite (ν−(h−z))◦(ν−(h+z)) = 0 is due to h2 = a2+bc in Ũ . A section x1e1+x2e2 ∈
Ṽ, x1, x2 ∈ Ũ is in the kernel of ν−(h+z) if and only if (a−h)x1+bx2 = cx1−(a+h)x2 = 0. Using

that Ũ is free over U with a basis 1, h, we write xi = yi+hzi, zi, yi ∈ U , i = 1, 2. The last condition
is equivalent to y1 = az1 + bz2, y2 = cz1− az2, ay1− (a2 + bc)z1 + by2 = cy1− ay2− (a2 + bc)z2 = 0

and to y1 = az1 + bz2, y2 = cz1 − az2. We see that there is a U-surjection V = U2 ↠ Ṽ[ν − (h +
z)] : (z1, z2) 7→ ((a + h)z1 + bz2)e1 + (cz1 − (a − h)z2)e2 which is an isomorphism (for example

(a + h)z1 + bz2 = 0 implies that z1 = 0). Hence the Ũ-map ν − (z − h) : Ṽ → Ṽ[ν − (z + h)] is

surjective. The embedding V ↪→ Ṽ induces a surjection V → Ṽ/(ν − (h + z)) = Ṽ/(h − (ν − z)).

Then the map ν − (z − h) : Ṽ/(ν − (z + h))→ Ṽ[ν − (z + h)] is an isomorphism.
(3) We identify Og̃(−1) ⊂ V with the subsheaf Og̃(g.e1) where g ∈ GL2(O(GL2)) denotes the

universal element. The map g̃→ h sends (ν, gB) to the image of Ad(g−1)ν in h = {(h+ z, h− z)}
via b → h. Hence h + z ∈ O(h), pulled back to g̃, satisfies that ν(g.e1) = g.(Ad(g−1)ν)e1 =
(h + z)(g.e1). Thus Og̃(−1) ⊂ f∗V[ν − (h + z)]. Taking direct images we get f∗Og̃(−1) ⊂
(f∗f

∗V)[ν − (h + z)]. We claim that Og̃(−1) = f∗V[ν − (h + z)] (when restricted to g̃reg). Then

f∗Og̃(−1) = Ṽ[ν − (h+ z)] when restricted to greg (Lemma 2.3), hence on whole g by [Sta24, Tag

0EBJ] and that Ṽ[ν − (h + z)] is a vector bundle by (2). By G-equivariance, we may check the

identification on the open subspace U := g̃ ∩ ({ν =

(
a+ z b
c −a+ z

)
} × {

(
1
x 1

)
B}). Since

https://stacks.math.columbia.edu/tag/0DWZ
https://stacks.math.columbia.edu/tag/090U
https://stacks.math.columbia.edu/tag/0EBJ
https://stacks.math.columbia.edu/tag/0EBJ
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Ad(g−1)ν =

(
a+ bx+ z b

c− 2ax− bx2 −a− bx+ z

)
, we see h = a+ bx and c− 2ax− bx2 = 0. A section

x1e1+x2e2 ∈ f∗V(U), x1, x2 ∈ Og̃(U) is in the kernel of ν− (h+ z) if and only if (a−h)x1+ bx2 =
cx1− (a+h)x2 = 0 if and only if b(x2−xx1) = (2a+bx)(x2−xx1) = 0 in Og̃(U). The scheme U is
integral which implies that x2−xx1 = 0. Then x1e1+x2e2 = x1(e1+xe2) = x1(g.e1) ∈ Og̃(−1)(U)
and we finished the proof. □

Remark 2.5. Those rank two free sheaves in Proposition 2.4 on g are not flat over Og×h/W h. The
fibers of these sheaves at a = b = c = z = 0 have dimension 2 but are not free of rank one over
L[h]/h2. For example, by the proof of (2) of the proposition, we know

f∗Og̃(−1) = Ṽ[ν − (h+ z)] ≃ (Ũx1 ⊕ Ũx2)/((a− h)x1 + bx2, cx1 − (a+ h)x2).

3. Change of weights

We will construct (in §3.2) the change of weights maps and prove the product formula for
the completions of the stack Xn of (φ,Γ)-modules of rank n ≥ 1 along fixed Sen weights loci
(Proposition 3.12). In §3.3, we describe a general construction for families of (φ,Γ)-modules
changing possibly non-fixed weights. Then we will study the flatness of the local model map in
the GL2(Qp) case in §3.4.

We fix K a finite extension of Qp and assume Σ = Hom(K,L) has size |K : Qp|. Take h =
(hσ)σ∈Σ = (hσ,1, · · · , hσ,n)σ∈Σ ∈ (Zn)Σ such that hσ,1 ≤ · · · ≤ hσ,n for all σ. Let G =

∏
σ∈Σ GLn/L

with the Weyl group W ≃ (Sn)Σ where Sn is the n-th symmetric group and with the Lie algebra g.
Let Ph =

∏
σ∈Σ Phσ

be the standard parabolic subgroup of G containing
∏

σ B such that the Weyl

group WPh
of the Levi subgroup of Ph is the stabilizer subgroup of h for the action of W = SΣn on

(Zn)Σ. We write g̃h for g̃Ph
and fh = fPh

: g̃Ph
→ g, the analytification of the map in §2.

3.1. Stacks of almost de Rham (φ,Γ)-modules. We recall the setting in [EGH23, §5] and the
definition of various stacks.

Let RigL be the category of rigid analytic spaces over L equipped with the Tate-fpqc topology
defined in [CT09, §2.1]. By a stack we mean a category fibered in groupoids over RigL satisfying
descent for the Tate-fpqc topology. Given a stack X over RigL and Sp(A) ∈ RigL, we write X(A) :=
X(Sp(A)) = Hom(Sp(A),X) for the groupoid lying over Sp(A) (cf. Yoneda lemma [Sta24, Tag
0GWI,Tag 02XY]). Sheaves with values in sets are viewed as stacks fibered in discrete categories.

Example 3.1. If Y ∈ RigL, then Y defines a sheaf over RigL via Yoneda embedding by [Con06,
Cor. 4.2.5]. Let Z ⊂ Y ∈ RigL be a Zariski-closed subspace and let I be the coherent ideal sheaf.
We define a subsheaf Y ∧ ⊂ Y such that for any X ∈ RigL, Y

∧(X) is the set of morphisms X → Y
such that the image of X lies set-theoretically in Z. For n ∈ N, let Yn be the closed subspace of
Y cut out by In. We get a directed system · · ·Yn ↪→ Yn+1 · · · of sheaves over RigL. Then Y ∧ is
equal to the sheaf colimit lim−→n

Yn: for an affinoid Sp(A) ∈ RigL, we have Y ∧(A) = lim−→n
Yn(A)

(cf. [Sta24, Tag 0738,Tag 0GXT,Tag 0AIX]).

For a (φ,ΓK)-module DL′ over RL′,K for a finite extension L′ of L, the roots of the Sen
polynomial of DL′ in (K ⊗Qp

L′)[T ] =
∏

σ∈Σ L′[T ] are Sen weights of DL′ , see [KPX14, Def.
6.2.11]. The σ-components of the roots for σ ∈ Σ are called σ-Sen weights.

Definition 3.2. (1) Let L′ be a finite extension of L, then a (φ,ΓK)-module DL′ of rank
n over RL′,K is said to be almost de Rham (resp. has Sen weights h) if all the Sen
weights are integers (resp. for all σ ∈ Σ, the multiset of σ-Sen weights of DL′ is equal to
{hσ,1, · · · , hσ,n}.)

(2) Let X ∈ RigL. A (φ,ΓK)-module DX of rank n over RX,K is said to be almost de Rham
(resp. almost de Rham of weight h) if for every point x ∈ X, the specialization Dx is
almost de Rham (resp. has Sen weights h).

If X = Sp(A), then a (φ,ΓK)-module DA over RA,K is almost de Rham of weight h if and only
if its Sen polynomial PSen ∈ (K ⊗Qp

A)[T ] is equal to
∏

σ∈Σ

∏n
i=1(T − hσ,i) modulo the nilradical

of A.

Definition 3.3. Let (Xn)
∧
h be the category fibered in groupoids over RigL sending X ∈ RigL to

the groupoid of almost de Rham (φ,ΓK)-modules over RX,K of weight h.

https://stacks.math.columbia.edu/tag/0GWI
https://stacks.math.columbia.edu/tag/0GWI
https://stacks.math.columbia.edu/tag/02XY
https://stacks.math.columbia.edu/tag/0738
https://stacks.math.columbia.edu/tag/0GXT
https://stacks.math.columbia.edu/tag/0AIX
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Definition 3.4. Assume that X ∈ RigL. Suppose that DpdR,X is a finite projective rank n

module over OX ⊗Qp
K equipped with a decreasing filtration Fil•X = (FiliX)i∈Z by projective

OX -submodules of DpdR,X .

(1) The filtration Fil•X is said to be of type h if for any σ ∈ Σ, the filtration Fil•X,σ :=

Fil•X⊗OX⊗QpK,1⊗σOX of DpdR,X,σ := DpdR,X⊗OX⊗QpK,1⊗σOX satisfies that for all i ∈ Z,
Fil−i

X,σ/Fil
−i+1
X,σ is projective over OX of rank the multiplicity of i in {hσ,1, · · · , hσ,n}.

(2) Let g̃h/G be the category fibered in groupoids over RigL sending X ∈ RigL to the groupoid
of triples (DpdR,X, νX ,Fil•X) where DpdR,X is a projective OX ⊗Qp K-module of rank n,
νX is an OX ⊗Qp

K-linear endomorphism of DpdR,X and Fil•X is a filtration of DpdR,X by
projective sub-OX -modules of type h stabilized by ν.

(3) Let g̃h be the category fibered in groupoids over RigL sending X ∈ RigL to the groupoid
of (DpdR,X, νX ,Fil•X , αX) where (DpdR,X, νX ,Fil•X) ∈ (g̃h/G)(X) and αX : DpdR,X ≃
(OX ⊗Qp

K)n is an isomorphism of OX ⊗Qp
K-modules.

Lemma 3.5. The categories fibered in groupoids (Xn)
∧
h and g̃h/G in Definition 3.3 and 3.4 define

stacks on RigL.

Proof. We need to verify that (Xn)
∧
h and g̃h/G satisfy descent for Tate-fpqc coverings. The descents

for (φ,ΓK)-modules and (DpdR,X , νX ,Fil•X) are effective by descents of vector bundles (cf. [Con06,
Thm. 4.2.8]). The properties of being of weight/type h, etc., can be checked pointwisely and thus
descend. □

If h = 0, the information on filtrations is trivial and in this case, we write g/G for g̃h/G. Let
fh : g̃h/G→ g/G be the natural morphism of stacks forgetting the filtrations.

Lemma 3.6. The stack g̃h is represented by the rigid analytic space g̃h. The following diagram of
stacks

g̃h g̃h/G

g g/G

fh fh

is Cartesian.

Proof. A filtration Fil•X,σ of type h of DpdR,X,σ ≃ OX on X ∈ RigL is determined by the flags

Fil−hσ,n ⊇ · · · ⊇ Fil−hσ,1 for σ ∈ Σ. With isomorphisms DpdR,X,σ ≃ On
X , one sees by definition

that such flags are parametrized by the flag varieties GLn/Phσ
. An endomorphism νX,σ of On

X is

equivalent to a map X → gln and the map X → gln×GLn/Phσ factors through g̃lnPhσ
if and only

if νX,σ stabilizes the filtration. The diagram is Cartesian by definitions. □

3.2. A product formula. We recall the local model maps and will define the change of weights
maps in Proposition 3.12. We will freely use constructions and results on families of almost de
Rham (φ,ΓK)-modules in Appendix A.

Suppose Sp(A) ∈ RigL and DA ∈ (Xn)
∧
h(A). Apply Proposition A.6 for the ΓK-representations

localized from DA in §A.1, we obtain functorially a triple

(DpdR(DA), νA,Fil
•DpdR(DA)) ∈ (g̃h/G)(A).

Such construction glues along admissible Tate coverings and is functorial for the base change, hence
we get the following statement, which already appeared in [EGH23, §5.3.22].

Proposition 3.7. The functor DpdR : DX 7→ (DpdR(DX), νX ,Fil•DpdR(DX)) induces a (local
model) morphism DpdR : (Xn)

∧
h → g̃h/G of stacks over RigL.

Remark 3.8. The map DpdR factors through the substack (g̃h/G)∧0 where all νX are required to
be locally nilpotent in the sense of Lemma 3.9 below.

Lemma 3.9. We consider nilpotent operators.

(1) Let A be a commutative Noetherian ring with the nilradical I. Let ν ∈Mn(A) be an n-by-n
matrix. Then ν is nilpotent if and only if its image in Mn(A/I) satisfies that νn = 0. And
in this case, there is an integer N depending on A,n such that νN = 0 in Mn(A).
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(2) Let X ∈ RigL and let ν ∈ EndOX
(On

X). Then ν is locally nilpotent (ν is nilpotent when
restricted to any affinoid open Sp(A) ⊂ X) if and only if for any x ∈ X, the image of ν in
Endk(x)(k(x)

n) = Mn(k(x)) is nilpotent.

Proof. (1) Suppose that νn ∈ Mn(I). Since I is nilpotent, we see that there exists an integer N
such that IN = 0. Then νnN = (νn)N = 0. Conversely, suppose that ν is nilpotent. We may
assume that A is reduced. For any prime ideal p of A, the image of ν in Mn(A/p) ⊂Mn(Frac(A/p))
is nilpotent. Hence νn ≡ 0 mod p for all prime ideal p of A. This implies that νn = 0.

(2) Suppose that ν is pointwisely nilpotent. We prove that ν is locally nilpotent. The problem
is local and we may assume X = Sp(A) is an affinoid. Let I be the nilradical of A. Then the image
of νn in Mn(A/I) is zero since it is true pointwisely. By (1), ν is nilpotent. □

The following lemma allows change of weights and is just the family version of [Din24, Lem.
2.1]. See §3.3 for a more direct construction.

Lemma 3.10. Let Sp(A) ∈ RigL and DA ∈ (Xn)
∧
h(A). There exists a unique (φ,ΓK)-module

fh(DA) ∈ (Xn)
∧
0 (A) almost de Rham of weight 0 such that fh(DA) is a sub-(φ,ΓK)-module of

DA[
1
t ] and fh(DA)[

1
t ] = DA[

1
t ]. Moreover, the formation DA 7→ fh(DA) is functorial and com-

mutes with base change.

Proof. By definition, there exists r > 0 such that DA = RA,K ⊗Rr
A,K

Dr
A for a (φ,ΓK)-module

Dr
A over Rr

A,K . We assume that m(r) is large enough in the sense of Definition A.4. We construct

fh(D
r
A) firstly and will let fh(DA) = RA,K ⊗Rr

A,K
fh(D

r
A). By Proposition A.3, the (φ,ΓK)-

modules inside Dr
A[

1
t ] which equal Dr

A[
1
t ] after inverting t is in bijection with ΓK-invariant (A⊗Qp

Km)[[t]]-lattices in Dm
dif(D

r
A) for m = m(r). By (1) of Proposition A.6 and also the Step 1 of

its proof, there exists a ΓK-invariant lattice inside Dm
dif(D

r
A) of weight 0 corresponding to the

filtrations Fil• of type 0 of DpdR(DA), which can only be the trivial filtration:

Fil0 = DpdR(DA) ⊃ Fil1 = {0}.
Thus there exists a sub (φ,ΓK)-module fh(D

r
A) of rank n inside Dr

A[
1
t ] of weight 0 such that

fh(D
r
A)[

1
t ] = Dr

A[
1
t ]. To show the uniqueness, suppose that ∆A,∆

′
A ⊂ DA[

1
r ] are two required

(φ,ΓK)-submodules of weight 0. Then we obtain a map in

Homφ,γK
(∆A,∆

′
A[

1

t
]) = lim−→

i≥0

Homφ,γK
(∆A, t

−i∆′
A) = Homφ,γK

(∆A,∆
′
A).

The last equality follows from that H0
φ,γK

(t−i∆∨
A ⊗RA,K

∆′
A/t

−i+1(∆∨
A ⊗RA,K

∆′
A)) = 0 for all

i ≥ 1 by Lemma 3.11 below since ∆∨
A ⊗ ∆′

A has weight 0. Hence the identity ∆A[
1
t ] = ∆′

A[
1
t ] is

induced by a map ∆A → ∆′
A which is necessarily an inclusion. We conclude that ∆A = ∆′

A. The
functoriality follows from the functorialities of the constructions in Appendix A or the uniqueness
of fh(DA). □

Lemma 3.11. Suppose that DA is a (φ,ΓK)-module over RA,K for an affinoid algebra A over L
and is almost de Rham of weight 0. Then H0

φ,γK
(tiDA/t

i+1DA) = 0 for all i ̸= 0.

Proof. We know tiDA has weights all equal to i. Suppose that DA = RA,K ⊗RA,K
Dr

A for

some (φ,ΓK)-module over Rr
A,K and r > 0. Then tiDA/t

i+1DA = lim−→r′≥r
tiDr′

A/ti+1Dr′

A =

lim−→r′≥r

∏
m≥m(r′) D

m
Sen(t

iDA), cf. Appendix A and [Liu15, Prop. 2.15]. Taking φ-invariants we

have (tiDA/t
i+1DA)

φ=1 = D∞
Sen(t

iDA) = K∞ ⊗Km Dm
Sen(t

iDA) (cf. [KPX14, Prop. 3.2.4, Def.
6.2.11]). By definition H0

φ,γK
(tiDA/t

i+1DA) ⊂ D∞
Sen(t

iDA)
γK=1. The differential of the ΓK-action

gives the Sen operator ∇Sen. Since the Sen weights of tiDA are pointwisely i ̸= 0, ∇Sen − i acts
locally nilpotently on D∞

Sen(DA). One gets that D∞
Sen(t

iDA)
γK=1 ⊂ D∞

Sen(t
iDA)

∇Sen=0 = 0. □

Glueing the construction in Lemma 3.10, we get a map

fh : (Xn)
∧
h → (Xn)

∧
0

and a commutative diagram of stacks over RigL

(Xn)
∧
h g̃h/G g̃h

(Xn)
∧
0 g/G g

DpdR

fh fh fh

DpdR
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where all squares are Cartesian by the following proposition.

Proposition 3.12. The functor Ψ = (fh, DpdR) induces an equivalence

Ψ : (Xn)
∧
h ≃ (Xn)

∧
0 ×g/G g̃h/G

of stacks over RigL.

Proof. The 2-fiber product (Xn)
∧
0 ×g/G g̃h/G is a stack [Sta24, Tag 026G] and for an affinoid

Sp(A) ∈ RigL, the groupoid ((Xn)
∧
0 ×g/G g̃h/G)(A) is the category of tuples

(∆A, DpdR,A, νA,Fil
•DpdR,A, αA)

where ∆A is a (φ,ΓK)-module of rank n over RA,K almost de Rham of weight 0, a triple

(DpdR,A, νA,Fil
•DpdR,A) ∈ g̃h/G(A)

and αA : DpdR,A ≃ DpdR(∆A) is an isomorphism of A⊗Qp K-modules compatible with the nilpo-
tent operators. Suppose that g1, g2 ∈ Isom(DA, D

′
A) for DA, D

′
A ∈ (Xn)

∧
h . If Ψ(g1) = Ψ(g2), then

g1 = g2 : DA[
1
t ] = fh(DA)[

1
t ] → D′

A[
1
t ] = fh(D

′
A)[

1
t ]. Since DA is t-torsion free, we see g1 = g2.

Now suppose g is an isomorphism (fh(DA),Fil
•DpdR(DA), αA) ≃ (fh(D

′
A),Fil

•DpdR(D
′
A), α

′
A)

where αA, α
′
A are the natural identifications, e.g., DpdR(DA) = DpdR(DA[

1
t ]) = DpdR(fh(DA)).

By [KPX14, Lem. 2.2.9], the morphism g : fh(DA)→ fh(D
′
A) is induced by some map fh(DA)

r →
fh(D

′
A)

r uniquely determined by fh(DA) and fh(D
′
A) for some r > 0 such that m(r) is large

enough. By the uniqueness in the proof of Lemma 3.10, fh(DA)
r = fh(D

r
A) and fh(D

′
A)

r =
fh((D

′
A)

r). Then Proposition A.6 and Proposition A.3 implies that there exists g′ : Dr
A ≃

(D′
A)

r which induces g. This shows that Ψ is fully faithful by [Sta24, Tag 04WQ]. Also given

(∆A, DpdR,A, νA,Fil
•DpdR,A, αA), the triple (DpdR,A, νA,Fil

•DpdR,A) and αA define a latticeDm,+
dif

of Dm
dif(∆A) by Proposition A.6 for m = m(r) if ∆A is the base change from a (φ,ΓK)-module over

Rr
A,K for some r such that m(r) is large enough, which gives a modification DA of ∆A by Propo-

sition A.3. This shows that the tuple lies in the essential image of ΨA. Then Ψ is an equivalence
by [Sta24, Tag 046N]. □

Corollary 3.13. The map fh : (Xn)
∧
h → (Xn)

∧
0 is projective, i.e., for any Sp(A) ∈ RigL with

Sp(A) → (Xn)
∧
0 , the fiber product f−1

h (Sp(A)) := Sp(A) ×(Xn)∧0
(Xn)

∧
h is isomorphic to a rigid

analytic space projective over Sp(A).

Proof. By Proposition 3.12, Sp(A) ×(Xn)∧0
(Xn)

∧
h = Sp(A) ×g/G g̃h/G. Let (DpdR,A, νA) be the

universal A ⊗Qp
K-module over A induced from Sp(A) → g/G. Then f−1

h (Sp(A)) is the stack
over RigL/ Sp(A) of νA-stable filtrations on DpdR,A of type h. This stack is representable by the
representability of Grassmannians and that being νA-stable is a Zariski-closed condition (essentially
given by vanishing of matrix coefficients for morphisms between vector bundles). □

Remark 3.14. Locally, we can choose a trivialization DpdR,A ≃ (A ⊗Qp
K)n in the above proof,

equivalently choose a section Sp(A)→ g for Sp(A)→ g/G. The map Sp(A)→ g is defined by νA
with the set-theoretical image contained in the nilpotent cone N , and f−1

h (Sp(A)) = Sp(A)×g g̃h.

3.3. Change of weights for general families. We point out that change of weights for (φ,ΓK)-
modules may work for more general families, without pointwisely fixed Sen weights. Let DA be
a (φ,ΓK)-module over RA,K for an affinoid Sp(A) ∈ RigL. We fix σ ∈ Σ and write PSen(T ) ∈
(A⊗QpK)[T ] for the Sen polynomial ofDA, and PSen,σ(T ) for its σ-component via A⊗QpK ≃

∏
σ A.

We will call PSen,σ(T ) the σ-Sen polynomial in the following.

Lemma 3.15. Two polynomials Q(T ) and S(T ) in A[T ] are coprime to each other ((Q(T ), S(T )) =
(1)) if and only if for any x ∈ Sp(A), the sets of roots of Q(T ) ⊗A k(x) and of S(T ) ⊗A k(x) in

k(x) have empty intersection.

Proof. The condition that (Q(T ), S(T )) = (1) is equivalent to that there is no maximal ideal m of
A[T ] containing both S(T ) and P (T ). Any maximal ideal m of A[T ] lies over a point x ∈ Sp(A)
[Sta24, Tag 00GB]. The result follows. □

Proposition 3.16. Suppose that the σ-Sen polynomial PSen,σ(T ) of DA admits a decomposition
PSen,σ(T ) = Q(T )S(T ) in A[T ] by monic polynomials such that (Q(T ), S(T )) = (1). Then there
exists a unique (φ,ΓK)-module D′

A over RA contained in DA and containing tDA such that the
Sen polynomial of D′

A is equal to Q(T − 1)S(T )
∏

σ′ ̸=σ PSen,σ(T ) ∈
∏

σ∈Σ A[T ].

https://stacks.math.columbia.edu/tag/026G
https://stacks.math.columbia.edu/tag/04WQ
https://stacks.math.columbia.edu/tag/046N
https://stacks.math.columbia.edu/tag/00GB
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Proof. We suppose that DA = Dr
A⊗Rr

A,K
RA,K for a (φ,ΓK)-module Dr

A over Rr
A,K . By Proposi-

tion A.3, it is enough to prove the following statement for a semilinear ΓK-representation Dm,+
dif,A,σ

over (A⊗σ,K Km)[[t]]: suppose that the characteristic polynomial for the Sen operator ∇ = ∇Sen

on Dm,+
dif,A,σ/t is equal to PSen,σ(T ) = Q(T )S(T ) such that (Q(T ), S(T )) = (1), then there exists a

unique sub-ΓK-representation M contained in Dm,+
dif,A,σ and containing tDm,+

dif,A,σ such that the Sen

polynomial of M/t is equal to Q(T − 1)S(T ).
Since (Q(T ), S(T )) = 1, A[T ]/PSen,σ(T ) = (A[T ]/Q(T )) × (A[T ]/S(T )) by the Chinese re-

mainder theorem. As PSen,σ(∇) annihilates Dm,+
dif,A,σ/t, this leads to a canonical decomposition

Dm,+
dif,A,σ/t = MQ ⊕MS where Q(∇) kills MQ and S(∇) is invertible on MQ. Since the actions of

ΓK , A and Km commute with ∇, MQ and MS are ΓK-stable projective A⊗σ,K Km-modules.
We claim that MQ is projective over A⊗σ,K Km of rank deg(Q) with characteristic polynomial

of ∇ equaling to Q(T ). We can check the rank at points Sp(L′) → Spec(A) for a finite extension
L′ over L and reduce to the case when A = L′ such that HomK(Km, L′) = [Km : K]. Then

Dm,+
dif,L′,σ/t =

∏
σ′∈HomK(Km,L′) D

m
Sen,L′,σ′ where Dm

Sen,L′,σ′ = Dm
Sen,L′ ⊗L′⊗σ,KKm,1⊗σ′ L′. And ΓK

permutes and induces ∇-equivariant isomorphisms between different σ′-factors. We have decom-
positions Dm

Sen,L′,σ′ = Mσ′,Q ⊕Mσ′,S for all σ′. Up to enlarging L′, the decomposition refines to
a decomposition by generalized eigenspaces for ∇ whose dimensions are given by multiplicities of
roots of PSen,σ. Then we see the rank over L′ of each Mσ′,Q is equal to the degree of Q (and
with the characteristic polynomial of ∇ equaling Q(T )). Hence MQ =

∏
σ′ Mσ′,Q is projective

over L′ ⊗σ,K Km with the expected rank. Return to general A, let Q′(T ), S′(T ) be the char-
acteristic polynomials of ∇ on MQ,MS . Then Q′(T )S′(T ) = Q(S)S(T ) and (Q′(T ), S′(T )) =
(Q(T ), S′(T )) = (Q′(T ), S(T )) = 1 by Lemma 3.15. We conclude that A[T ]/Q′(T ) = A[T ]/Q(T ),
hence Q′(T ) = Q(T ) since both are monic polynomials of the same degree.

We take M := ker(Dm,+
dif,A,σ → Dm,+

dif,A,σ/t ↠ MQ). There is a ΓK-filtration of (A⊗σ,K Km)[[t]]-
submodules

t2Dm,+
dif,A,σ ⊂ tM ⊂ tDm,+

dif,A,σ ⊂M ⊂ Dm,+
dif,A,σ

with graded pieces tMS , tMQ,MS ,MQ. Then M/tM admits a ΓK-filtration with graded pieces
tMQ and MS . Since ∇(tx) = t(∇+1)x for x ∈MQ, the characteristic polynomial of ∇ on M/tM
is Q(T − 1)S(T ). And M is finite projective over (A ⊗σ,K Km)[[t]] by Lemma 3.17 below. The
uniqueness comes from the uniqueness of the decomposition M = MQ ⊕MS . □

Lemma 3.17. Let B be a Noetherian ring. Let M be a submodule of a finite projective B[[t]]-
module D containing tkD such that D/M is finite flat over B[[t]]/tk. Then M is a finite projective
B[[t]]-module of the same rank as D.

Proof. Certainly M is finite over B[[t]]. Use the sequence 0 → M → D → D/M → 0 and that D

is flat over B[[t]], we have Tor
B[[t]]
i (−,M) = Tor

B[[t]]
i+1 (−, D/M) for i ≥ 1. For any B[[t]]-module N ,

there is a spectral sequence [Sta24, Tag 061Y]

TorB[[t]]/tk

n (TorB[[t]]
m (N,B[[t]]/tk), D/M)⇒ Tor

B[[t]]
n+m(N,D/M).

The flatness of D/M over B[[t]]/tk implies that TorB[[t]]/tk

n (TorB[[t]]
m (N,B[[t]]/tk), D/M) = 0 for

n ≥ 1. Thus the spectral sequence degenerates at the E2-page and

Tor
B[[t]]
i (−, D/M) = Tor

B[[t]]
i (−, B[[t]]/tk)⊗B[[t]]/tk D/M

for all i ≥ 0. Since B[[t]]/tk admits a flat resolution 0 → tkB[[t]] → B[[t]] → B[[t]]/tk → 0,

Tor
B[[t]]
i (−, B[[t]]/tk) = 0 for all i ≥ 2. Hence Tor

B[[t]]
i (−,M) = 0 for all i ≥ 1. This implies that

M is a finite flat B[[t]]-module. □

Example 3.18. Suppose that DA has weights h ∈ (Zn)Σ as in Lemma 3.10. Pick σ ∈ Σ and
assume that {hσ,1, · · · , hσ,n} = {−k1, · · · ,−ks} as sets where −k1 < · · · < −ks and each −ki
appears mi times in hσ. Let I be the nilradical of A. Then PSen,σ(T ) ≡

∏s
i=1(T + ki)

mi mod I.
By Hensel’s lemma [Sta24, Tag 0ALI], there exist coprime monic polynomials Q(T ), S(T ) such that
PSen,σ(T ) = Q(T )S(T ) and Q(T ) ≡ (T + k1)

m1 mod I. The above proposition gives a (φ,ΓK)-
moduleD′

A ⊂ DA such thatD′
A[

1
t ] = DA[

1
t ] of σ-weights hσ,1+1 = · · · = hσ,m1+1 ≤ hσ,m1+1 ≤ · · · .

Repeating such procedures for all σ and multiplying suitable powers of t, we can find in the end
D′

A such that D′
A = fh(DA) is almost de Rham of weight 0 and D′

A[
1
t ] = DA[

1
t ].

https://stacks.math.columbia.edu/tag/061Y
https://stacks.math.columbia.edu/tag/0ALI
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3.4. Flatness of the local model map. We prove that the local model mapDpdR : (Xn)
∧
0 → g/G

is flat in the sense of Corollary 3.28 and in the case n = 2, K = Qp. This part is to explain
Hypothesis 5.9 that will appear in our main theorem (Theorem 5.15 and also Proposition 5.10).
From now on we assume n = 2 and K = Qp. The major tool will be miracle flatness. Most
proofs in this section work for more general situations, except for the very last part of the proof of
Proposition 3.25.

We will define and study flatness via morphisms between complete local rings. We first recall
the definition of versal rings of stacks assuming existence.

Definition 3.19. Let X be a stack over RigL with a morphism x : Sp(L′)→ X where L′ is a finite
extension of L. Then x corresponds to an object in X(L′) denoted by DL′ .

(1) We define FX,x to be the groupoid fibered in CL′ sending A′ ∈ CL′ to pairs (DA′ ∈
X(A′), ιA′ : DA′ ⊗A′ L′ ≃ DL′) where we write DA′ ⊗A′ L′ for the pullback of DA′ in X
along Sp(A′/mA′) → Sp(A′). A morphism (A′, DA′ , ιA′) → (A′′, DA′′ , ιA′′) in FX,x is a
map A′ → A′′ in CL′ together with an isomorphism DL′ ⊗A′ A′′ ≃ DA′′ compatible with
ιA′ and ιA′′ , cf. [Sta24, Tag 07XD].

(2) A formal object of X is a complete Noetherian local ring (R,mR) with L′ = R/mR finite over
L and objects DR/mn

R
∈ X(R/mn

R) together with isomorphisms DR/mn
R
⊗R/mn

R
R/mn−1

R ≃
DR/mn−1

R
for all n [Sta24, Tag 07X3]. This formal object is versal at the map x : Sp(L′)→ X

corresponding to DR/mR
∈ D(L′) if the induced map Spf(R) → FX,x is formally smooth.

In this case we say R a versal ring of X at x.

Remark 3.20. Let A′ be an Artin local L-algebra with residue field L′ finite over L, then A′ is an
L′-algebra in a unique way such that L′ → A′ → A′/mA′ = L′ is the identity map (i.e., A′ ∈ CL′)
since L′ is formally étale over L [Sta24, Tag 04G3]. If A is an affinoid algebra and m is a maximal

ideal of A with residue field L′, then the completion Âm is an L′-algebra and is a versal ring of A at
the point x : Sp(L′)→ Sp(A) pro-representing FSp(A),x. If L

′′ is a finite extension of L′ and we let

x′′ : Sp(L′′)→ Sp(L′)→ Sp(A), then FSp(A),x′′ is pro-represented by the base change Âm ⊗L′ L′′.
Furthermore, if Y∧ is the completion of Y = Sp(A) with respect to an ideal I ⊂ A in the way of
Example 3.1 with an L′-point x : Sp(L′) → Y1 → Y∧, then by definition FY,x = FY∧,x are both

pro-represented by Âm = Â∧
m.

We choose an L-point x ∈ (X2)
∧
0 (L) ⊂ X2(L) with Sen weights (0, 0) corresponding to a (φ,Γ)-

module over RL. Let XDL
= FX2,x be the deformation problem over CL sending A ∈ CL to the

groupoid of pairs (DA, ιA) where DA is a (φ,Γ)-module over RA and ιA : DA/mA ≃ DL. Let
xpdR = DpdR(DL) be the image of x in (g/G)(L) given by (DpdR(DL), νL) and write XxpdR

be
the deformation problem of (DpdR(DL), νL) over CL [BHS19, §3.1].

Proposition 3.21. If DL is not a twist by a character of an extension of t−1RL(ϵ) by RL (written
as [RL − t−1RL(ϵ)]), then DpdR : XDL

→ XxpdR
is formally smooth.

Proof. To show formally smoothness, we need to show that for any surjction A′ → A = A′/I
in CL such that mA′I = 0, any deformation (DA, ι) of DL and deformation (DpdR,A′ , νA′) with
an isomorphism (DpdR,A′ , νA′) ⊗A′ A ≃ (DpdR(DA), νA), there exists (DA′ , ιA′) ∈ XDL

(A′) such
that there exists an isomorphism DpdR(DA′) ≃ DpdR,A′ compatible with νA′ and induces the
corresponding isomorphism modulo I, see [Sta24, Tag 06HF].

It’s more convenient for us to use the language of B-pairs: the equivalence between (φ,Γ)-
modules and B-pairs [Ber08a] and the equivalence between XxpdR

and deformations of almost de
Rham BdR-representations [BHS19, Lem. 3.1.4]. We follow the proof and notation of [Nak14,
Prop. 2.30]. Write W = (We,W

+
dR) = (We(DL),W

+
dR(DL)) and WA = (We,A,W

+
dR,A) =

(We(DA),W
+
dR(DA)). Write End(W ) = W∨ ⊗ W where the tensor is in the category of B-

pairs. Choose basis of We,A and W+
dR,A. Then WA gives us 1-cocycles ρe : GQp

→ GL2(Be ⊗Qp
A),

ρdR : GQp
→ GL2(B

+
dR⊗Qp

A) and a matrix P ∈ GL2(BdR⊗Qp
A) such that Pρe(g)g(P )−1 = ρdR(g)

for any g ∈ GQp
. Choose an L-linear section s : A → A′ of A′ → A which gives us lifts

ρ̃e := s ◦ ρe, ρ̃dR := s ◦ ρdR and P̃ . These elements defines 2-cocyles. For example, c2dR ∈
I ⊗L Z2(GQp

,EndB+
dR⊗QpL

(W+
dR)) is defined such that (use EndB+

dR⊗QpA
′(W

+
dR,A ⊗A A′) ⊗A′ I =

I ⊗L EndB+
dR⊗QpL

(W+
dR))

c2dR(g1, g2) = ρ̃dR(g1g2)g1(ρ̃dR(g2))
−1ρ̃dR(g1)

−1 − 1,∀g1, g2 ∈ GQp
.

https://stacks.math.columbia.edu/tag/07XD
https://stacks.math.columbia.edu/tag/07X3
https://stacks.math.columbia.edu/tag/04G3
https://stacks.math.columbia.edu/tag/06HF


14 ZHIXIANG WU

The vanishing of H2(GQp
,End(W )) (Lemma 3.24 below) implies that in the class of (ρ̃e, ρ̃dR, P̃ )

there exists always a lift (ρe,A′ , ρdR,A′ , PA′) which defines a B-pair WA′ = (We,A′ ,W+
dR,A′) over

A′ deforming WA. Moreover, standard arguments show that the set of deformations is an affine
space under I ⊗L H1(GQp

,End(W )) (see the proof of [Nak14, Lem. 2.28]). For example, another

lift ρ′dR,A′ of ρdR defines a 1-cocycle in I ⊗L Z1(GQp ,EndB+
dR⊗QpL

(W+
dR)):

c1dR(g) = ρ′dR,A′(g)ρdR,A′(g)−1 − 1,∀g ∈ GQp
.

Now we consider lifts of WdR,A to WdR,A′ . An easier argument shows that the set of deformations
is parametrized by I ⊗L H1(GQp

,EndBdR⊗QpL
(WdR)). The map between lifts induced by DpdR

corresponds to the natural map I ⊗L H1(GQp ,End(W )) → I ⊗L H1(GQp ,EndBdR⊗QpL
(WdR)).

We conclude that the existence of deformations to A′ of WA with given image under DpdR is
equivalent to that the map H1(GQp ,End(W )) → H1(GQp ,EndBdR⊗QpL

(WdR)) between tangent

spaces is surjective (cf. [Sta24, Tag 0E3R]).
To see when H1(GQp ,End(W )) → H1(GQp ,WdR) is surjective, we go back to the language of

(φ,Γ)-modules (we can also use B-quotients as in [Ked09]). Consider the long exact sequence (see
Lemma 3.24 below)

· · · → H1
φ,γ(EndRL

(DL))→ H1
φ,γ(EndRL

(DL)/tEndRL
(DL))→ H2

φ,γ(tEndRL
(DL))→ 0.

Using Lemma 3.23 below, the map H1
φ,Γ(EndRL

(DL)) → H1(GQp
,WdR(EndRL

(DL))) is sur-

jective if and only if H2
φ,γ(tEndRL

(DL)) = 0. By local Tate duality, H2
φ,γ(tEndRL

(DL))
∨ =

H0
φ,γ(t

−1EndRL
(DL)

∨(ϵ)) = H0
φ,γ(t

−1DL ⊗RL
D∨

L(ϵ)) which is non zero if and only if there exists

a non-zero morphism f : DL → DL(ϵz
−1) of (φ,Γ)-modules. Let f ̸= 0 be such a map. The

kernel and image of f are (φ,Γ)-modules [Ber08a, Prop. 1.1.1]. If DL is irreducible, then we get
an injection DL ↪→ DL(ϵz

−1) which must be an isomorphism as both modules have weights zero
(cf. Lemma 3.10). This is not possible considering φ-slopes (as ϵz−1(p) = p−1). Hence we may
suppose that DL is split trianguline, namely there exist smooth characters δ1, δ2 : Q×

p → L× and
a short exact sequence of (φ,Γ)-modules

0→ RL(δ1)→ DL → RL(δ2)→ 0.

We may also suppose that RL(δ1) is the rank one kernel of f . Then we get an injection RL(δ2) ↪→
DL(ϵz

−1). Hence δ1ϵz
−1 = δ2 since Homφ,γ(RL(δ),RL(δ

′)) = H0
φ,γ(RL(δ

′δ−1)) ̸= 0 for two
smooth characters δ, δ′ if and only if δ = δ′. Then under the assumption that DL is not of this
form, DpdR is formally smooth at DL. □

Remark 3.22. In the case that DpdR is not smooth at DL, f−1
h (DL) may contain non-smooth

points, see Lemma 3.24 below.

Lemma 3.23. Suppose that DL is a (φ,Γ)-module of Hodge-Tate-Sen weights all 0. Then the
map H1

φ,γ(DL)→ H1(GQp
,WdR(DL)) factors through H1

φ,γ(DL/tDL) and induces an isomorphism

H1
φ,γ(DL/tDL) ≃ H1(GQp

,W+
dR(DL)).

Proof. Since W+
dR(DL) has weights 0, the map H1(GK ,W+

dR(DL)) → H1(GQp
,WdR(DL)) is an

isomorphism. Moreover H1(GQp
, tW+

dR(DL)) = 0 is 0 (cf. [Nak14, Cor. 5.6]). We get isomorphisms

H1(GQp
,WdR(DL)) = H1(GQp

,W+
dR(DL)) = H1(GQp

,W+
dR(DL)/t).

There is a factorization H1
φ,γ(DL)→ H1(GQp ,W

+
dR(DL))→ H1(GQp ,WdR(DL)), see [Nak09, §2.1].

The cohomology of DL and tDL can be computed as GQp
-cohomology of complexes in the first two

columns of the following short exact sequence of complexes of GQp
-modules (see loc. cit.):

We(tDL)⊕W+
dR(tDL) We(DL)⊕W+

dR(DL) W+
dR(DL)/t

WdR(tDL) WdR(DL) 0.

By comparing the long exact sequence for the cohomology of 0→ tDL → DL → DL/tDL → 0 and
using five lemma, we see Hi

φ,γ(DL/t) ≃ Hi(GQp
,W+

dR(DL)/t) for i = 0, 1. □

Lemma 3.24. If DL has Hodge-Tate weights all 0, then H2
φ,γ(EndRL

(DL)) = 0 and XDL
is

formally smooth.

https://stacks.math.columbia.edu/tag/0E3R
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Proof. By the local Tate duality,

H2
φ,γ(EndRL

(DL)) = H0
φ,γ((D

∨
L ⊗RL

DL)
∨(ϵ))∨ = Homφ,γ(RL, DL ⊗RL

D∨
L(ϵ))

∨.

Suppose that there is a non-zero map g : RL → DL ⊗RL
D∨

L(ϵ), which must be an injection and
induces B+

dR ↪→ W+
dR(DL ⊗RL

D∨
L(ϵ)). However, all Hodge-Tate-Sen weights of the (φ,Γ)-module

DL ⊗RL
D∨

L(ϵ) are equal to 1,

H0(GQp ,W
+
dR(DL ⊗RL

D∨
L(ϵ))) = Fil0DdR(DL ⊗RL

D∨
L(ϵ)) = 0.

Hence H2
φ,γ(EndRL

(DL)) = 0. The formally smooth statement is [Che11, Prop. 3.6]. □

We choose a trivialization αL : DpdR(DL) ≃ L2 and let X□
xpdR

be the completion of g at the

corresponding matrix νL ∈ g. Let X□
DL

:= XDL
×XxpdR

X□
xpdR

, defined in [BHS19, §3.5]. Below, for
a groupoid X fibered over CL, write |X| for the corresponding functor taking isomorphism classes.

Proposition 3.25. The morphism XDL
→ XxpdR

is relatively representable and is flat for all DL

in the sense of maps between versal rings.

Proof. LetML = DL[
1
t ] and let XML

be the groupoid of deformations ofML in [BHS19, §3.3]. By
[BHS19, Lem. 3.5.3], the map XML

→ XxpdR
is relatively representable. Let W = (We,W

+
dR) :=

(We(DL),W
+
dR(DL)) be the B-pair of DL. We only need to show that the map XDL

≃ XWe×XWdR

XW+
dR
→ XML

≃ XWe is relatively representable (we used [BHS19, Prop. 3.5.1]). We reduce to

show that XW+
dR
→ XWdR

is relatively representable. This is true and in our case XW+
dR
≃ XWdR

when W+
dR has Hodge-Tate weight 0 (see Lemma 3.10 or [Wu21, Prop. 3.1]). Note that we get

XDL
≃ XWe

.
We may suppose that the mapX□

DL
= Spf(R□

DL
)→ X□

xpdR
= Spf(S□) is induced by a continuous

local morphism S□ → R□
DL

of complete Noetherian local rings. We prove that this map is flat. By

Proposition 3.21, this map is formally smooth, hence flat, if DL is not an extension of t−1RL(ϵδ)
by RL(δ) for a character δ of Q×

p . Otherwise, by miracle flatness [Sta24, Tag 00R3] and Lemma

3.24, it’s enough to show that the fiber R□
DL

/mS□ has codimension dimS□ = 4 in R□
DL

.

We first calculate the dimension of R□
DL

. Let A = L[ϵ] = L[ϵ]/ϵ2. The fibers of |X□
DL
|(A) →

|XDL
(A)| over given (DA, ιA) ∈ |XDL

(A)| are isomorphisms αA : DpdR(DA) ≃ A2 parametrized by

EndL(L
2). Two deformations given by αA, α

′
A are equivalent (give the same object in |X□

DL
|(A)) if

and only if there exists an isomorphism We,A ≃We,A (in bijection with H0(GQp
,EndBe⊗QpL

(We)))

inducing (α′)−1α. The dimension of |XDL
(A)| is the dimension of H1(GQp ,EndBe⊗QpL

(We)). The
composite

H0(GQp
,EndBe⊗QpL

(We))→ H0(GQp
,EndBdR⊗QpL

(WdR))

≃ EndRepL(Ga)(DpdR(WdR)) ↪→ EndL(DpdR(WdR))

is injective. Hence

dimL X□
DL

(A) = dimL H1(GQp
,EndBe⊗QpL

(We)) + 4− dimL H0(GQp
,EndBe⊗QpL

(We)) = 8

by Euler characteristic formula and vanishing of H2 (Lemma 3.24).
If DL = RL ⊕ RL(t

−1ϵ), νL = 0, the quotient R□/mS□ pro-represents the functor sending
A ∈ CL to the groupoid of (DA, ιA, αA) where αA : DpdR(DA) ≃ An and DA is de Rham. Since
DL is semi-stable, all its de Rham deformations are semi-stable by [Ber02, Thm. 0.9] and we have
DpdR(DA) = Dst(DA) for such deformations. By the equivalence in [Ber08b], the category of semi-
stable (φ,Γ)-modules of Hodge-Tate weights (0, 0) is equivalent to the category of (φ,N)-modules
of rank 2. Hence the de Rham locus is the deformation space of matrices (φ,N) ∈ GL2 × g such
that Nφ = pφN . This space has dimension 4 by [Hel23, Prop. 2.1].

If DL is a non-split extension of t−1RL(ϵ) by RL, then Endφ,γ(DL) = L and the sheaf
|XDL

| is pro-represented by a deformation ring RDL
of dimension dimL H1

φ,γ(EndRL
(DL)) = 5

[Che11, Prop. 3.4] (even though XDL
is not equivalent to |XDL

|). The fiber product X□
DL,νL

:=

Spf(R□
DL

) ×Spf(S□) Spf(S
□/mS□) pro-represents the groupoid fibered over CL sending A ∈ CL to

the groupoid of (DA, ιA, αA) where αA : DpdR(DA) ≃ An such that νA = νL under the trivial-
ization αA. Let XDL,0 be the groupoid sending A to (DA, ιA) ∈ XDL

(A) such that coefficients of
Sen polynomials (given by tr(νA) and det(νA)) of DA vanish. Then |XDL,0| is pro-represented by

a quotient RDL,0 of RDL
. Consider the map |X□

DL,νL
| → |XDL,0|. This map is formally smooth

https://stacks.math.columbia.edu/tag/00R3
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and of relative dimension 1 by Lemma 3.26 below. Thus dimL R□
DL,νL

= dimL RDL,0 + 1. We

show that dimL RDL,0 = 3, or has codimension 2 in RDL
. Let Xz−1ϵ

DL
be the deformation problem

parametrizing deformations of DL with fixed determinant z−1ϵ (or RA(z
−1ϵ)). Then |Xz−1ϵ

DL
| is

pro-represented by a complete Noetherian local ring Rz−1ϵ
DL

. Let RRL
be the dimension 2 universal

deformation ring of the trivial rank one (φ,Γ)-module. We have RDL
= Rz−1ϵ

DL
⊗̂LRRL

(see Lemma
3.27 below). Since fixed weight deformation of the trivial character has dimension one, it’s enough
to show that the fixed determinant deformation ring is flat over L[[h]] where h is sent to the ele-

ment in Rz−1ϵ
DL

given by the trace of the universal nilpotent operator ν. By Krull’s principal ideal

theorem, a minimal prime of Rz−1ϵ
DL

containing h has either height one or height zero. If all mini-

mal primes containing h has height one, then dimRz−1ϵ
DL

/h = dimRz−1ϵ
DL
− 1 = 2 as desired. If the

minimal prime containing h has height zero, since Rz−1ϵ
DL

is integral (even regular, as is for RDL
),

we see h = 0 in Rz−1ϵ
DL

. This is not possible since we can construct trianguline deformations of the

form DA = [RA(δ
−1
A )− t−1RA(δAϵ)] for some δA : Q×

p → A× and A = L[ϵ] such that the weight of

δA is not zero and DA deforms DL (the cokernel of H1
φ,γ(RA(zδ

−2
A ϵ−1))→ H1

φ,γ(RL(zϵ
−1)) maps

injectively into H2
φ,γ(RL(zϵ

−1)) = 0). □

Lemma 3.26. The map |X□
DL,νL

| → |XDL,0| in the above proof is formally smooth of relative
dimension 1.

Proof. Let A′ → A = A′/I be a surjection in CL such that I2 = 0. Let νA′ ∈ EndA′(A′2)

such that νA′ ≡ νL =

(
0 1

0

)
mod I and det(νA′) = tr(νA′) = 0. We claim that there exists

M ∈ I2+IM2(A
′) (where I2 is the identity matrix) such that MνA′M−1 = νL. To show the claim,

write νA′ =

(
a 1 + b
c d

)
for a, b, c, d ∈ IA′ and suppose that M = I2+

(
x y
z w

)
for x, y, z, w ∈ IA′.

Since I2 = 0, one can calculate that MνA′ = νLM if and only if

(
z w − x

−z

)
=

(
a b
c d

)
. As

det(νA′) = tr(νA′) = 0 implies that d = −a and c = 0, the solutions exist.
The above discussion shows that the map is formally smooth. To see the relative dimension,

we only need to calculate the difference between tangent spaces. Let A = L[ϵ]. The fiber in
|X□

DL,νL
|(A) over given (DA, ιA) ∈ |XDL,0|(A) (by the above discussion we may suppose that

νA =

(
0 1

0

)
) consists of matrices M of the form I2+ ϵ

(
x y
0 x

)
for x, y ∈ L which span a space of

dimension two. Two such matrices give the same object in |X□
DL,νL

|(A) if and only if there exists

an automorphism DA → DA which reduces to identity modulo ϵ (determined by an element in
L = H0

φ,γ(EndRL
(DL))) and induces the automorphism of DpdR(DA). Hence the fibers between

tangent spaces have dimension one. □

Lemma 3.27. Let A ∈ CL and let δA : Q×
p → A× be a continuous character such that δA ≡ 1

mod mA. Then δ
1
2

A : Q×
p → A×, x 7→ δA(x)

1
2 :=

∑
i≥0

( 1
2
i

)
(δA(x)− 1)i defines the unique character

such that δ
1
2

A ≡ 1 mod mA and δA = (δ
1
2

A)
2.

We will use the flatness in Proposition 3.25 in the following situation. Let Y = Sp(A) be
an affinoid over L together with a (φ,Γ)-module DA. Let I ⊂ A be the ideal generalized by
coefficients of the Sen polynomial cutting out the locus where DA has Sen weights (0, 0) and
Y∧ the completion along this locus, A∧ the completion with respect to I (cf. Appendix B). Let
h : Sp(A) → X2 and h∧ : Y∧ → (X2)

∧
0 be the morphism of stacks induced by DA and (DA/In)n.

Let DpdR : Y∧ → (X2)
∧
0

DpdR→ g/G be the composite and let D□
pdR : Y∧,□ := Y∧ ×g/G g → g be

the base change.

Corollary 3.28. In the above situation, suppose that h is smooth in the sense of versal maps: for

any L′-point y : Sp(L′) → Sp(A) and x : Sp(L′)
y→ Sp(A)

h→ X2, the induced map FSp(A),y →
FX2,x = XDL′ is formally smooth. Then the map D□

pdR : Y∧,□ → g is flat in the sense that maps
between versal rings at points with residue fields finite over L are flat.
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Proof. An L′-point y□ : Sp(L′)→ Y∧,□ corresponds to a map Sp(L′)→ A such that the pullback
DL′ has weights (0, 0) together with a framing αL′ : DpdR(DL′) ≃ (L′)2. Let νL′ ∈ g(L′) be the

nilpotent element. By the difinition of Y∧,□, the deformation problem FY∧,□,y□ sends A′ ∈ CL′

to pairs (αA′ : DpdR(DA ⊗A A′) ≃ (A′)2, A → A′) where A → A′ is a morphism such that
A → L′ factors through A′ and αA′ ≡ αL′ mod mA′ . Then (DA′ = DA ⊗A A′, ιA′ : DA′ ⊗A′

L′ = DL′ , αA′) ∈ X□
DL′ (A

′) deforming x□ = (DL′ , ιL′ , αL′) ∈ X□
DL′ (L

′). By our assumption

FY∧,□,y□ = FY∧,y ×Fg/G,ν
L′
Fg,νL′ = FY∧,y ×XD

L′
XD□

L′
is formally smooth over XD□

L′
. By

Proposition 3.25, the versal ring map which induces XD□
L′
→ Fg,νL′ is flat. Hence the composite

map FY∧,□,y□ → Fg,νL′ is also flat. □

Remark 3.29. Locally on Y1, one can choose a trivialization DpdR(DA/I) on Y1 where Yn =

Sp(A/In). Then Y□
1 = Y1 × GL2 and DpdR(DY1) is free with a basis on Y1. We can lift this

basis by Nakayama lemma to a basis of DpdR(DA∧) := lim←−n
DpdR(DA/In) which is a finite free

A∧-module by Lemma B.4. We get a trivialization Y∧,□ = Y∧ ×GL2.
Cover Y∧,□ by affinoids of the form Sp(B/I) × U where Sp(B) ⊂ Sp(A) and U ⊂ GL2 are

affinoid opens. Let C = B⊗̂LO(U) and C∧ be its I-adic completion. The morphism Sp(C)∧ =
Sp(B)∧ ×U → g of ringed sites factors through an affinoid V ⊂ g. In fact, write g = ∪s∈Ng≤ps :=
∪s∈N Sp(L⟨psa, psb, psc, psd⟩). The map Sp(B)∧ × U → g is determined by sending a, b, c, d to the
matrix coefficients of νC∧ ∈ EndC∧(DpdR(DC∧)) under the trivialization DpdR(DC∧) ≃ (C∧)2 on
Sp(C)∧. Take s such that psa, · · · , psd are topologically nilpotent in C/I. Then for any n ≥ 1,
psa, · · · , psd are also topologically nilpotent in C/In and induces lim−→n

Sp(C/In)→ g≤ps . The ring

maps O(g≤ps)→ C∧ and L[a, b, c, d]→ C∧ are flat by Corollary 3.28 and Lemma 3.30 below.

Lemma 3.30. Let A be an Noetherian ring with an ideal I and I-adic completion A∧. Let B be
another Noetherian ring and g : B → A∧ be a morphism of rings. Suppose that for any maximal

ideal m of A∧ and n = g−1(m), the homomorphism B̂n → Â∧
m of complete local rings is flat. Then

the ring map g is flat itself.

Proof. Since I is in the Jacobson radical of A∧, maximal ideals of A∧ is in bijection with maximal
ideals of A/I = A∧/I. By [Sta24, Tag 00HT], its enough to show that for all m, n as above, the map

Bn → (A∧)m is flat. Since both A∧ and B are Noetherian, the maps (A∧)m → Â∧
m and Bn → B̂n

are faithfully flat, the flatness of the map between Zariski local rings follows (by definition). □

4. Translations in family for GL2(Qp)

We will recall the definition of translations for (φ,Γ)-modules in [Din23] in the GL2(Qp) case.
We will need some explicit calculations for translations in families. It will be shown that the
translation from regular weights to non-regular weights is the same as the change of weights of
(φ,Γ)-modules. From now on, K = Qp.

The Lie algebra g = gl2 is spanned by

a+ =

(
1

0

)
, a− =

(
0

1

)
, u+ =

(
0 1

0

)
, u− =

(
0
1 0

)
.

We write

z = a+ + a− =

(
1

1

)
, h = a+ − a− =

(
1
−1

)
The Casimir operator c = h2 − 2h+ 4u+u− ∈ U(g).

Let A be an affinoid algebra over L. A (φ,Γ)-module DA over RA is a P+ =

(
Zp \ 0 Zp

1

)
-

module and is a p+-module where p+ = L[a+, u+] via the identifications

φ =

(
p

1

)
,Γ =

(
Z×
p

1

)
, L[[X]] = L[[

(
1 Zp

1

)
]].

The actions of u+ on DA is given by v 7→ d
dz (1+X)zv|z=0 = log(1+X)v = tv and a+ by ∇ = ∇Sen

by the lemma below.

Lemma 4.1. Suppose that Dr
A is a (φ,Γ)-module over Rr

A, then the map v 7→ d
dγ |γ=1γ.v, γ ∈

Z×
p ≃ Γ defines the Sen operator ∇Sen acting on Dr

A.

https://stacks.math.columbia.edu/tag/00HT
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Proof. The proof is the same as the case when A is a field using [Ber02, Lem. 5.2]. It is proved in
[KPX14, Prop. 2.2.14] that the action of Γ on Dr

A extends to an action of the distribution algebra
of Γ which contains the element a+. □

Definition 4.2. A (φ,Γ, g)-module over Rr
A is a (φ,Γ)-module Dr

A (in the sense of [KPX14, Def.
2.2.12]) over Rr

A with an A-linear continuous action of U(g) extending the action of U(p+) such
that the U(g)-action extends continuously to Ds

A for all 0 < s < r and φu− = p−1u−φ,φa− = a−φ

under φ : Dr
A → D

r/p
A . A (φ,Γ, g)-module over RA is a (φ,Γ)-module over RA with an action of

U(g) that is the base change from Rr
A to RA for a (φ,Γ, g)-module over Rr

A and some r > 0.

A (φ,Γ, g)-module is naturally a (P+, g)-module defined in a similar way where P+ acts con-
tinuously. If DA is a (φ,Γ, g)-module, then the action of Z(g) commutes with φ,Γ,Rr

A.

Lemma 4.3. Let Dr
A be a (φ,Γ)-module over Rr

A of rank two. Write PSen(T ) = T 2 − γ1T + γ0 ∈
A[T ] for the Sen polynomial of DA. There exists a unique A-linear g-module structure on Dr

A such
that c acts on Dr

A by (γ2
1 − 4γ0− 1) and z acts by γ1− 1 making Dr

A (resp. DA) a (φ,Γ, g)-module.

Proof. This is just [Col18, Prop. 2.2]. We declare the (unique) action of a− by z − a+, h =

a+ − a− = 2∇ − z = 2∇ − γ1 + 1 and u− by c−h2+2h
4u+ = −PSen(∇)

t . The last one is possible
because PSen(∇)DA ⊂ tDA by the same reason for [Col18, Lem. 1.6] using Proposition A.3. We
can check this formally defines an action of g. For example for v ∈ DA, we have [u+, u−]v =
(u+u− − u−u+)v = −PSen(∇) + t−1PSen(∇)tv = −(∇2 − γ1∇ + γ0)v + t−1(∇2 − γ1∇ + γ0)tv =
(2∇ − γ1 + 1)v = h.v using that ∇(tv) = tv + t∇(v). We also check that φu− = p−1u−φ using
that φ commutes with z, c and φu+ = pu+φ. □

Definition 4.4. We say the g-module structure in Lemma 4.3 the standard g-module structure
for a rank 2 (φ,Γ)-module over RA or Rr

A.

Remark 4.5. It is possible to equip a (φ,Γ)-module with different g-structures. See [Din23, Rem.
2.14] for more discussions.

Let Vk = SymkL2 = R+
L/X

k+1 be the irreducible representation of g of highest weight (k, 0)

(for the Borel subalgebra the algebra of upper-triangular matrices). Here R+
L = D(Zp, L) ⊂ RL

is the distribution algebra of Zp identified with rigid analytic functions in variable X on the open
unit disc. If Dr

A is a (φ,Γ, g)-module, then Dr
A ⊗L Vk is also a (P+, g)-module via the diagonal

action of P+. The following observation is due to Ding.

Proposition 4.6 ([Din23, Prop. 2.1]). Suppose that DA is a (φ,Γ, g)-module over RA. The
diagonal action of R+

A = D(Zp, L)⊗̂LA extends to an action of RA making DA ⊗L Vk a (φ,Γ, g)-
module over RA. And there is a filtration

0 ⊂ DA ⊗L XkR+
L/X

k+1 ⊂ · · · ⊂ DA ⊗L XiR+
L/X

k+1 ⊂ · · · ⊂ DA ⊗L R+
L/X

k+1

of (φ,Γ)-modules (as well as p+-modules, but not as g-modules) with graded pieces

DA ⊗L (XiR+
L/X

i+1) ≃ tiDA

for 0 ≤ i ≤ k.

Proof. By definition, there exists r such that DA is the base change of Dr
A from a finite projective

module over Rr
A. We will prove (and will use) the statement for Dr

A.
The same proof of loc. cit. shows that the action of R+

A extends to an action of Rr
A on

Dr
A ⊗L Vk. We give a direct proof here. Notice that for X = [1] − 1 ∈ L[[Zp]] ⊂ D(Zp, L),

g ∈ Dr
A and v ∈ Vk, we have X(X−1g ⊗ v) = g ⊗ v + X−1g ⊗ Xv + g ⊗ Xv. We then get

1
X (g ⊗ v) = X−1g ⊗ v − 1

X (X+1
X g ⊗ Xv) = X−1g ⊗ v − X+1

X2 g ⊗ Xv + 1
X ((X+1

X )2g ⊗ X2v) =∑k
i=0(−

X+1
X )iX−1g ⊗ Xiv. Hence X−m(g ⊗ v) =

∑k
i=0

(
m+i−1
m−1

)
(−X+1

X )iX−mg ⊗ Xiv. And we

conclude that f(X)(g⊗ v) =
∑k

i=0
1
i! (X+1)if (i)(X)g⊗Xiv where f (i) denotes the i-th derivative

of f . The extension of the action follows since if f ∈ Rr
A = O(Ur × Sp(A)), so is its derivative for

X. Then Dr
A⊗L Vk becomes a projective Rr

A-module with a Rr
A-filtration. The projectivity is due

to that extensions of projective modules are projective.

We extend the φ,Γ actions diagonally. For example φ : Dr
A → R

r/p
A ⊗Rr Dr

A gives a map Dr
A⊗L

R+
L/X

k+1 → (Rr/p
A ⊗Rr

A
Dr

A)⊗LR+
L/X

k+1. There is an Rr/p
A -isomorphism Ψ : Rr/p

A ⊗Rr
A
(Dr

A⊗L

R+
L/X

k+1) ≃ (Rr/p
A ⊗Rr

A
Dr

A)⊗LR+
L/X

k+1 : f(X)⊗ (g⊗v) 7→
∑k

i=0(
1
i! (X+1)if (i)(X)⊗g)⊗Xiv
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for f(X) ∈ Rr/p
A , g ∈ Dr

A, v ∈ R
+
L/X

k+1 which is well-defined and extends the R+
L -actions (given

by the diagonal action of Zp). We get the desired φ-action map: Dr
A ⊗L R+

L/X
k+1 → Rr/p

A ⊗Rr
A

(Dr
A⊗LR+

L/X
k+1) : g⊗m→ Ψ−1(φ(g)⊗φ(m)). The equality Ψ−1(φ(f(X+1).(g⊗m))) = f((X+

1)p).(Ψ−1(φ(g)⊗ φ(m))) is equivalent to that φ(f(X + 1).(g ⊗m)) = f((X + 1)p).(φ(g)⊗ φ(m))
which can be checked formally.

See Lemma 4.15 below for the last isomorphism. □

Lemma 4.7. If A → B is a morphism of affinoid algebras and DA is an (φ,Γ, g)-module, then
DA⊗RA

RB is also a (φ,Γ, g)-module and there is an isomorphism (DA⊗LR+
L/X

k+1)⊗RA
RB ≃

((DA ⊗RA
RB)⊗L R+

L/X
k+1) as (φ,Γ, g)-modules.

Proof. We let Z(g) ⊂ U(g) acts on the (φ,Γ)-module DB := DA⊗RA
RB by extending the scalars.

To show that DB is a (φ,Γ, g)-module, we need to show that the action of u− = − 1
t (c

2−h2+2h) is

defined, or that (c2 − (2∇− z)2 + 2(2∇− z))DB ⊂ tDB . Using Proposition A.3, that Dm
Sen(DB) =

Dm
Sen(DA)⊗A B, the extension of the u− action follows. The map (DA ⊗LR+

L/X
k+1)⊗RA

RB →
((DA ⊗RA

RB) ⊗L R+
L/X

k+1) is given by (g ⊗ v) ⊗ f 7→
∑k

i=0
1
i! (X + 1)if (i)(X)g ⊗ Xiv for

g ∈ DA, v ∈ R+
L/X

k+1. The map induces isomorphisms on graded pieces of the filtration in
Proposition 4.6, hence is an isomorphism of (φ,Γ)-modules over RB itself. It is a g-isomorphism
since it is moreover compatible with the RB-linear actions of Z(g). □

We need recall translations of g-modules.

Lemma 4.8. Let R be a ring.

(1) Suppose that R is commutative with a nilpotent ideal I and VR is an R-module equipped
with an R-linear endomorphism C. Let a, b ∈ R such that a− b ∈ I. Then VR{C = a} =
VR{C = b} where {C = −} denotes the generalized eigenspace.

(2) Let R be an L-algebra. Suppose that VR is an R-module and Z is a commutative algebra
finitely generated over L with an L-morphism Z → EndR(VR). Suppose that VR is locally
Z-finite (for any v ∈ VR, Z.v ⊂ VR is finite-dimensional over L). Then the R-morphism
⊕m∈SpecMax(Z)VR[m

∞]→ VR is an isomorphism.
(3) Let R → S be a morphism of L-algebras. Let VS = VR ⊗R S and let Z act on VS by

extending the scalar. Suppose that VR is locally Z-finite. Then for any m ∈ SpecMax(Z),
the natural map VR[m

∞]⊗R S → VS [m
∞] is an isomorphism.

Proof. (1) Let x = b − a ∈ I. Let T = C − a. Then (T − x)s =
∑s

i=0

(
s
i

)
(−1)n−iT ixn−i. If

v ∈ V is killed by some power of T , since it is killed by some power of x, it is killed by some power
(T − x)s = (C − b)s.

(2) The decomposition (as L-spaces) holds for all finite-dimensional Z-modules.
(3) This follows from the decompositions in (2) for VR and VS and that VR[m

∞]⊗RS is mapped
into (VR ⊗R S)[m∞]. □

For two weights λ, µ ∈ t∗ = HomL(t, L) such that ν = λ − µ ∈ Z2 is integral, write ν for the
dominant weight in the Weyl group orbits of ν for the linear Weyl group action. We recall the
following definitions (see [JLS21, §2.3, §2.4.1]). For λ ∈ t∗, let mλ ⊂ Z(g) be the kernel of the
infinitesimal character χλ attached to λ via the Harish-Chandra isomorphism.

Definition 4.9. Let M be a U(g)-module.

(1) We say M is locally Z(g)-finite if for any v ∈M , the subspace Z(g).v is finite-dimensional
over L.

(2) If M is locally Z(g)-finite, write pr|λ|M := M [m∞
λ ].

(3) If M is locally Z(g)-finite, Tλ
µM := pr|λ|(pr|µ|M ⊗L L(ν)).

Remark that if M is Z(g)-finite, then M ⊗L L(ν) is also locally Z(g)-finite (see [BG80, Cor.
2.6 (ii)]). Moreover, there is a direct sum decomposition M = ⊕m∈SpecMax(Z(g))M [m∞]. If M =
M [m∞] for some m = mλ and λ+ ρ is dominant, then

M ⊗ V = ⊕µ∈wt(V)pr|λ+µ|(M ⊗ V )

for any finite dimensional g-module V where µ runs over all t-weights appeared in V (see the end
of [BG80, §2]). Moreover, if 0 → M1 → M → M2 → 0 is a short exact sequence of U(g)-modules
such that M1,M2 are locally Z(g)-finite, then so is M .
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Lemma 4.10. Let λ1, · · · , λn ∈ t∗ such that λi+1−λi ∈ X∗(t)+ are dominant integral weights for
all n− 1 ≥ i ≥ 1 and suppose that λ1 + (1, 0) is dominant. Then for a locally Z(g)-finite g-module
M , there are natural isomorphisms

Tλn

λn−1
· · ·Tλ2

λ1
M ≃ Tλn

λ1
M ≃ pr|λn|(pr|λ1|M ⊗ L(λ1 − λ2)⊗ · · · ⊗ L(λn − λn−1)).

Proof. The tensor product L(λ1 − λ2)⊗ · · · ⊗ L(λn − λn−1) has a direct summand L(λn − λ1) of
multiplicity one and all the other summands are irreducible representations with highest weight
µ < λn − λ1 by induction using Steinberg’s theorem [Ste61]. □

Lemma 4.11. Let DA be a (φ,Γ, g)-module over RA that is locally Z(g)-finite. Let I be the
nilradical of A.

(1) Suppose that χ1,A, χ2,A : Z(g) → A are two characters such that χ1 ≡ χ2 mod I. Then
DA{Z(g) = χ1,A} = DA{Z(g) = χ2,A}.

(2) Let λ ∈ t∗ and χA = χλ corresponding to mλ ∈ SpecMax(Z(g)). Then the generalized
eigenspace DA{Z(g) = χA} = DA[m

∞
λ ] is a (φ,Γ)-module.

(3) In the situation of (2). The functor DA{Z(g) = χλ} is exact on locally Z(g)-finite (φ,Γ, g)-
modules and its formation commutes with arbitrary base change, i.e., for any map A→ B
of L-affinoid algebras, we have DA[m

∞
λ ]⊗RA

RB ≃ DB [m
∞
λ ] where DB = DA ⊗RA

RB.

Proof. (1) An affinoid algebra A over L is Jacobson and Noetherian. The nilradical I is nilpotent.
The statement follows from that Z(g) is finitely generated and Lemma 4.8.

(2) Since the action of Z(g) commutes with the (φ,Γ, g)-module structure on DA, we see
DA{Z(g) = χA} is a RA-module with compatible actions of φ,Γ, g. It suffices to show that
DA{Z(g) = χA} is a (φ,Γ, g)-module. By (2) of Lemma 4.8, Dr

A[m
∞
λ ] is a direct summand of Dr

A.
Then Dr

A[m
∞
λ ] is finite projective over Rr

A and we have DA{Z(g) = χA} = RA ⊗Rr
A
Dr

A{Z(g) =
χA}.

(3) This also follows from Lemma 4.8. □

For Sen weights h = (h1, h2) ∈ Z2, h1 ≤ h2, we write λ = λh = (h2−1, h1) for the corresponding
character of b where λ+(1, 0) is dominant. Then χλ is the infinitesimal character Z(g)→ L : z 7→
h1 + h2 − 1, c 7→ (h1 − h2)

2 − 1.

Proposition 4.12. Let DA be an almost de Rham (φ,Γ)-module of rank two over RA with Sen
weights (h1, h2), h1 ≤ h2, equipped with the standard U(g)-module structure by Lemma 4.3. Then
DA = DA{Z(g) = χλ}. And for any µ ∈ X∗(t), Tµ

λDA is an almost de Rham (φ,Γ)-module over
RA provided that Tµ

λDA ̸= 0. Moreover, the formation of Tµ
λDA commutes with base change.

Proof. In Lemma 4.3, Z(g) act on DA by a character χA(z) = γ1− 1 and χA(c) = (γ2
1 − 4γ0− 1) if

the Sen polynomial equals to T 2− γ1T + γ0. Since DA pointwisely has Sen weights h1, h2, the Sen
polynomial equals to (T − h1)(T − h2) at all closed points of Spec(A). An element f ∈ A is in the
nilradical I of A if f ∈ m for every maximal ideal m of A. We see X2 − γ1X + γ0 ≡ X2 − (h2 +
h1)X + h1h2 mod I. Thus χA ≡ χλ mod I. Hence DA = DA[Z(g) = χA] = DA{Z(g) = χλ} by
(1) of Lemma 4.11. The other statements follow from the same lemma, Lemma 4.7 and Proposition
4.6. □

Corollary 4.13. We equip rank two (φ,Γ)-modules DA with the standard g-structures.

(1) Suppose that DA is almost de Rham with pointwisely regular Sen weights (h1, h2) ∈ Z2, h1 <
h2. Then for any integral weight µ = (h′

2 − 1, h′
1) such that h′

1 < h′
2, T

µ
λDA is almost de

Rham of rank two pointwisely with Sen weights (h′
1, h

′
2).

(2) Suppose that DA is almost de Rham with pointwisely non-regular Sen weights (h′
1, h

′
2) ∈

Z2, µ = (h′
2 − 1, h′

1), h
′
1 = h′

2. Then for any integral weight λ = (h2 − 1, h1) such that
h1 < h2, T

λ
µDA is almost de Rham of rank 4.

Proof. In any case Tµ
λDA is a (φ,Γ)-module by Proposition 4.12 and its rank, being almost de

Rham and Sen weights can be checked at points. The statements follow from the case when A is
a field which was studied in [Din23, Prop. 2.19]. □

Remark 4.14. In the case when λ − µ = (1, 0) and DA has non-regular Sen weights, Tλ
µDA =

DA ⊗L V1.

We start calculations of translations. The easiest case is a twist by an algebraic character.
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Lemma 4.15. For i ∈ Z, let Lti be the algebraic character deti of GL2 which is also a g-module.
Then for a rank 2 (φ,Γ)-module DA over RA, t

iDA with the standard g-module structure is equal
to DA ⊗L Lti.

Proof. On deti = Lti we have u±.ti = 0 and a±.ti = iti. Thus for x⊗ti, x ∈ DA we get u+.(x⊗ti) =
tx⊗ ti, a±.(x⊗ ti) = (a±+ i)x⊗ ti and u−.(x⊗ ti) = u−.x⊗ ti = −PSen(∇)

t x⊗ ti. For tix ∈ tiDA we

have u+.(tix) = ti+1x, a+.(tix) = ti(a+ + i)x, z.tix = (γ1 − 1 + 2i)x in the notation of Lemma 4.3.

Hence a−.tix = ti(γ1−1+2i−a+− i)x = ti((a−+ i)x). And u−.tix = −P ′
Sen(∇)

t tix = −ti PSen(∇)
t x

where P ′
Sen denotes the Sen polynomial of tiDA. The last equality comes from ∇.tix = ti(∇+ i)x

and P ′
Sen(T ) = PSen(T − i) = T 2 − (γ1 + 2i)T + γ0 + iγ1 + i2. □

By a twist, we only need to discuss the case when at least one of the weights of an almost de
Rham (φ,Γ)-module is zero.

Lemma 4.16. Let DA be an almost de Rham (φ,Γ)-module over RA with pointwisely regular Sen
weights h1 < h2. Then there exists α, β ∈ A such that PSen(T ) = (T −α)(T −β) and α−h1, β−h2

are in the nilradical I of A.

Proof. We have PSen(T ) ≡ (T − h1)(T − h2) mod I. Hence PSen(h1) ∈ I. Moreover P
(1)
Sen(h1) ≡

h1 − h2 /∈ I. By Hensel’s lemma, we can find α ∈ A such that α ≡ h1 mod I and PSen(α) = 0.
Then PSen must be of the form (T − α)(T − β) such that β ≡ h2 mod I. □

Proposition 4.17. Let DA be an almost de Rham (φ,Γ)-module pointwisely with regular Sens
weight (0, k) and let λ = (k − 1, 0) where k ≥ 1. We assume that the Sen polynomial is equal to
(T − (k + z − h))(T − (z + h)) for z, h in the nilradical of A (which is possible by Lemma 4.16).

(1) Let µ = (k − 1, k). The natural map Tµ
λDA ↪→ DA ⊗L Vk ↠ DA identifies Tµ

λDA with the
unique almost de Rham (φ,Γ)-submodule inside DA of weights (k, k) such that Tµ

λDA[
1
t ] =

DA[
1
t ], which contains tkDA and is the preimage of (DA/t

k)[
∏k−1

i=0 (∇−(k+z−h)−i) = 0].

(2) Let λ′ = (k′ − 1, 0) for k′ ≥ k. The natural map Tλ′

λ DA ↪→ DA ⊗L Vl ↠ DA for l = k′ − k
identifies Tµ

λDA with the unique almost de Rham (φ,Γ)-submodule inside DA such that

Tλ′

λ DA[
1
t ] = DA[

1
t ] of weights (0, k

′) and consists of v ∈ DA such that
∏j

i=0(∇− (z+h)−
i)v ∈ tj+1DA for all j ≤ l − 1.

In both cases, the output of the translation is a rank two (φ,Γ)-module and admits an infinitesimal
character.

Proof. The last assertion follows from Corollary 4.13, or by the case when l = 1 using the calcula-
tion below and by an induction as for [Din23, Prop. 2.19].

Let l ≥ 1. The element z acts on DA ⊗L Vl by 2z + k + l− 1. Let e be the lowest weight vector
of R+

L/X
l+1 ≃ Vl : α 7→ αe. Then h = 2a+ − z acts by 2∇ − 2z − k + 1 on DA and by 2i − l

on tie; u+ by t on DA and t = log(1 +X) =
∑

i≥0
(−1)i

i Xi on Vl; u
− by − 1

tPSen(∇) on DA and

u−.tie = i(l − i + 1)ti−1e so that c = h2 − 2h + 4u+u− acts on Vl by l2 + 2l. Hence the Casimir
acts by (for v ∈ DA, 0 ≤ i ≤ l and with the convention that ti−1e = 0 if i = 0)

c.(v ⊗ tie) =((2∇+ 1− 2z − k + 2i− l)2 − 2(2∇+ 1− 2z − k + 2i− l))v ⊗ tie

(4.1)

+ 4i(l − i+ 1)(v ⊗ tie+ tv ⊗ ti−1e)− 4PSen(∇)v ⊗ tie− 4t−1PSen(∇)v ⊗ ti+1e

=(4(2i− l)∇+ (2z + k − 2i+ l)2 − 1− 4(z + h)(k + z − h) + 4i(l − i+ 1))v ⊗ tie

+ 4i(l − i+ 1)tv ⊗ ti−1e− 4t−1PSen(∇)v ⊗ ti+1e

=(4(2i− l)∇+ (γ1 − 2i+ l)2 − 1− 4γ0 + 4i(l − i+ 1))v ⊗ tie

+ 4i(l − i+ 1)tv ⊗ ti−1e− 4t−1PSen(∇)v ⊗ ti+1e

where γ1 = 2z + k and γ0 = (z + h)(k + z − h).
(1) Now l = k.

c.(v ⊗ tie) = (4(2i− k)∇+ 4(i(1− 2z − k) + kz + k2 − hk + h2)− 1)v ⊗ tie

+4i(k − i+ 1)tv ⊗ ti−1e− 4t−1PSen(∇)v ⊗ ti+1e.
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Suppose that
∑k

i=0 vi⊗ tie is an eigenvalue for 4h2− 1. Consider the coefficient in DA of 1⊗ e we
get 4ktv1+(−4k∇+4(kz+k2−hk+h2)−1)v0 = (4h2−1)v0. We see v1 = t−1(∇− (k+z−h))v0.
We prove by induction that vi =

1
it (∇− (k + z − h))vi−1 for i ≥ 1. Suppose the statement holds

for i− 1 ≥ 0. Then t−1PSen(∇)vi−1 = i(∇− (z + h) + 1)vi. Consider the coefficient of 1⊗ tie we
get

−4i(∇−(z+h)+1)vi+(4(2i−k)∇+4(i(1−2z−k)+kz+k2−hk+h2)−1)vi+4(i+1)(k−i)tvi+1 = (4h2−1)vi
which is equivalent to that vi+1 = 1

(i+1)t (∇− (k+ z− h))vi unless i ≥ k. And if i = k the equality

holds under the induction assumption.
Thus

k−1∏
i=0

1

t
(∇− (k + z − h))v0 =

1

tk
(∇− (k + z − h)− (k − 1)) · · · (∇− (k + z − h))v0 ∈ DA.

By the discussion in §3.3, D′
A = {v ∈ DA | 1

t (∇ − (k + z − h))v ∈ DA} defines the unique

sub-(φ,Γ)-module of DA such that D′
A[

1
t ] = DA[

1
t ] and D′

A is almost de Rham of weight (1, k).
By Proposition A.3, the description of Tµ

λDA follows from the following statement:

Lemma 4.18. Let M be a continuous Γ-representation over (A⊗QpKm)[[t]] with the connection ∇
as in Appendix A such that the characteristic polynomial of ∇ on M/tM is (X − (k+ z−h))(X −
(z + h)) for k ∈ Z≥0 and h, z nilpotent. Then there is a direct sum decomposition

M/tkM = ⊕k−1
i=0 M [∇ = (k + z − h+ i)]⊕⊕k−1

i=0 M [∇ = (z + h+ i)]

where all the direct summands are projective of rank one over A⊗Qp Km.

(2) Suppose that
∑l

i=0 vi ⊗ tie is an eigenvector of c for the eigenvalue (k + l − 2h)2 − 1.
Consider the coefficient of 1⊗ e we get 4ltv1 +(−4l∇+(2z+ k+ l)2− 4(k+ z−h)(z+h)− 1)v0 =
((k + l − 2h)2 − 1)v0. We see v1 = 1

t (∇ − (h + z))v0. We prove by induction that we must

have vi =
1
it (∇ − (h + z))vi−1 for i ≥ 1. Assume that the statement holds for i − 1 ≥ 0. Then

t−1PSen(∇)vi−1 = i(∇− (k + z − h) + 1)vi. Consider the coefficient of 1⊗ tie we get

−4i(∇− (k + z − h) + 1)vi + (4(2i− l)∇+ (2z + k − 2i+ l)2 − 1− 4(z + h)(k + z − h) + 4i(l − i+ 1))vi

+4(i+ 1)(l − i)tvi+1 = ((k + l − 2h)2 − 1)vi

which is equivalent to that vi+1 = 1
(i+1)t (∇ − (h + z))vi unless i ≥ l. And if i = l the equality

holds under the statement.
To see the uniqueness. Assume that D′

A ⊂ DA with Sen weights (0, k′) and such that D′
A[

1
t ] =

DA[
1
t ]. Then DpdR(D

′
A) = DpdR(DA) and Fil0DpdR(D

′
A) ⊂ Fil0DpdR(DA) by definition. Since

Fil0DpdR(D
′
A),Fil

0DpdR(DA) are both direct summand ofDpdR(DA) of rank one, Fil0DpdR(D
′
A) =

Fil0DpdR(D
′
A) which determines Dm,+

dif (D′
A) for some m and also D′

A by results in Appendix A.
The description holds as for (1) and by an induction on l. □

From non-regular weights to regular weights we only treat the easiest case.

Proposition 4.19. Let ∆A be an almost de Rham (φ,Γ)-module pointwisely with non-regular
Sen weights (0, 0), µ = (−1, 0) and λ = (0, 0). Then the natural map Tλ

µ∆A ↪→ ∆A ⊗L V1 is an

isomorphism. If the Sen polynomial of ∆A is T 2−γ1T+γ0 ∈ A[T ], then (c−γ2
1+4γ0)

2 = 4(γ2
1−4γ0)

on ∆A ⊗L V1.

Proof. We follow the notation in the proof of Proposition 4.17. By (4.1) (replacing k + 2z by γ1
and (k + z − h)(z + h) by γ0), we see

(c−γ2
1+4γ0).(v⊗tie) = (4(2i−1)∇+4i(1−γ1)+2γ1)v⊗tie+4i(2−i)tv⊗ti−1e−4t−1PSen(∇)v⊗ti+1e.

For i = 0 we have

(c− γ2
1 + 4γ0).(v ⊗ e) = (−4∇+ 2γ1)v ⊗ e− 4t−1(∇2 − γ1∇+ γ0)v ⊗ te

and for i = 1
(c− γ2

1 + 4γ0).(v ⊗ te) = (4∇+ 4− 2γ1)v ⊗ te+ 4tv ⊗ e.

Then (c− γ2
1 + 4γ0)

2 − 4(γ2
1 − 4γ0) = 0 on ∆A ⊗L V1 by a direct check. □

The following proposition describes the counit map of the adjunction of the translations in the
case k = 1.
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Proposition 4.20. Let λ = (0, 0) and µ = (−1, 0). Let DA be an almost de Rham (φ,Γ)-module
of weight (1, 0) over A with Sen polynomial (T − (z−h+1))(T − (z+h)) where z, h are nilpotent.
Let ∆A ⊂ t−1DA be the sub (φ,Γ)-module of Sen weights (0, 0) in Proposition 4.17 which provides
the isomorphism ∆A = Tµ

λDA. Let c = c− 4h2 which acts on DA by −4h.
Then the composite Tλ

µ∆A = Tλ
µ T

µ
λDA → DA ↪→ ∆A induced by the counit map Tλ

µ T
µ
λDA → DA

is equal to Tλ
µ∆A(= ∆A ⊗L R+

L/X
2)

1
4 (c−4h)
→ Tλ

µ∆A[c+ 4h] ⊂ ∆A ⊗L R+
L/X

2 ↠ ∆A.

Proof. Before the proof, note that Proposition 4.17 shows that ∆A contains DA and identifies ∆A

with the preimage of (t−1DA/DA)[∇ = z − h]. Also by Proposition 4.19, (c− 4h)(c+ 4h) acts as
zero on Tλ

µ∆A.

Recall we identify R+
L/X

2 ≃ Sym1L2 = Lx ⊕ Ly where 1 = y is the lowest weight vector,

t = X = x. Let (Sym1L2)∨ = Lx∗ ⊕ Ly∗ be the dual where x∗, y∗ are the dual basis. We fix an
isomorphism Lt−1 ⊗L R+

L/X
2 ≃ det−1⊗LSym

1L2 = (Sym1L2)∨ by t−1 ⊗ 1 = x∗, t−1 ⊗ t = −y∗
(since u+.x∗ = −y∗). The unit and counit map is induced by

L→ (Lx∗ ⊕ Ly∗)⊗L (Lx⊕ Ly)→ L

1 7→ x∗ ⊗ x+ y∗ ⊗ y

where the second map is the evaluation map.
The map Tλ

µ∆A = Tλ
µ T

µ
λDA → DA ↪→ ∆A factors through (by Lemma 4.15)

Tλ
µ T

µ
λDA = ∆A ⊗L R+

L/X
2 ↪→ t−1DA ⊗L R+

L/X
2 ⊗L R+

L/X
2 → DA ↪→ ∆A

where v ∈ ∆A is sent to v⊗e+t−1(∇−(z−h))v⊗te in t−1DA⊗LR+
L/X

2 by the proof of Proposition

4.17. The image of (v ⊗ e+ t−1(∇− (z − h))v ⊗ te)⊗ e ∈ (t−1DA ⊗LR+
L/X

2)⊗LR+
L/X

2 via the
evaluation map in DA is −(∇− (z− h))v and the image of (v⊗ e+ t−1(∇− (z− h))v⊗ te)⊗ te is
tv.

On the other hand, for v ∈ ∆A, using (4.1) again for ∆A ⊗L R+
L/X

2,

(c±4h).(v⊗tie) = (4(2i−1)∇+4i(1−2z)+4z±4h)v⊗tie+4i(2−i)tv⊗ti−1e−4t−1PSen(∇)v⊗ti+1e.

For i = 0 we have

(c− 4h).(v ⊗ e) = 4(−∇+ (z − h))v ⊗ e− 4t−1PSen(∇)v ⊗ te.

and

(c− 4h).(v ⊗ te) = 4(∇+ (1− z − h))v ⊗ te+ 4tv ⊗ e.

Hence the image of 1
4 (c− 4h)(v⊗ e) in ∆A is (−∇+ z− h)v and the image of 1

4 (c− 4h)(v⊗ te) in
∆A is tv. □

5. Geometric translations for GL2(Qp)

We will prove our main results on the geometric translations in the GL2(Qp) case (Theorem
5.15). We first make necessary preparations in §5.1 for the study of the direct image of (φ,Γ)-
modules over formal rigid spaces in Construction 5.4. We prove our main result in §5.2 which
compares the direct image and the translation. The interested reader may consult the pointwise
cases in §5.3 first or the description in Corollary 5.12 for the basic ideas on computations. We take
G = GL2/L, K = Qp and f : g̃→ g.

5.1. Formal completion of (φ,Γ)-modules. A (φ,Γ)-moduleDr
A overRr

A for an affinoid algebra
A over L is equivalently a (φ,Γ)-bundle on Ur

Sp(A) = Sp(A)×L Ur, namely a Γ-equivariant vector

bundle Dr
Sp(A) on Ur

Sp(A) equipped with an isomorphism φ∗Dr
Sp(A) ≃ D

r
Sp(A)|Ur/p

Sp(A)

commuting

with Γ-actions. This point of view will be more convenient for the consideration of cohomologies
(but will not work for translations), and we need a similar description for formal completions of
(φ,Γ)-modules. A basic discussion on coherent modules over formal rigid spaces can be found in
Appendix B.

Let Sp(A) ∈ RigL with an ideal I of A. Let Yn = Sp(A/In) and Y∧ := lim−→n
Yn. The latter is

a ringed site with the structure sheaf OY∧ = lim←−n
OYn whose global section is A∧ := lim←−n

A/In.

There is a sheaf of OY∧-module Rr
Y∧ := lim←−n

Rr
Yn

for small enough r > 0 whose global section is

Rr
A∧ := lim←−n

Rr
A/In . We define RA∧ := lim−→r

Rr
A∧ .
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Recall that for r small enough and s < r, φ : R[s,r]
A → R[s/p,r/p]

A ,Rr
A → Rr/p

A make the

targets finite free of rank p over the sources and we have Rr/p
A = ⊕p−1

i=0 (1 + X)iφ(Rr
A). Taking

I-adic completion, we get Rr/p
A∧ = ⊕p−1

i=0 (1 +X)iφ(Rr
A∧) and taking direct limit RA∧ = ⊕p−1

i=0 (1 +
X)iφ(RA∧).

Definition 5.1. Let X∧ be the formal completion of a rigid space X along a Zariski closed subspace
defined by a coherent ideal sheaf I as in Definition B.1.

(1) A (φ,Γ)-module (resp. (φ,Γ, g)-module) Dr
X∧ over Rr

X∧ := lim←−n
Rr

Xn
is a locally finite

projective Rr
X∧-module with a (φ,Γ)-structure, i.e., an isomorphism

φ : φ∗Dr
X∧ := Rr/p

X∧ ⊗φ,Rr
X∧ Dr

X∧ ≃ Rr/p
X∧ ⊗Rr

X∧ Dr
X∧

commuting with a semilinear action of Γ (resp. (φ,Γ)-structure and an action of g) such
that there exist (φ,Γ)-modules (resp. (φ,Γ, g)-modules as in Definition 4.2) Dr

Xn
over

Rr
Xn

satisfying Dr
Xn+1

/In = Dr
Xn

for all n ≥ 1 and there exists an isomorphism Dr
X∧ ≃

lim←−n
Dr

Xn
.

(2) A (φ,Γ)-module DX∧ over RX∧ := lim−→r
Rr

X∧ is a RX∧-module with (φ,Γ)-structure

such that there exists a (φ,Γ)-module Dr
X∧ over Rr

X∧ and DX∧ = RX∧ ⊗Rr
X∧ Dr

X∧ =

lim−→r′<r
Rr′

X∧ ⊗Rr
X∧ Dr

X∧ .

The underlying Rr
Y-module of a (φ,Γ)-module Dr

Y over Rr
Y is the Rr

Y-module associated

to its global section Dr
A which is finite projective over Rr

A: for any affinoid open Sp(B) ⊂ Y,
Γ(Sp(B), Dr

Y) = Dr
A ⊗Rr

A
Rr

B . A vector bundle over Ur
Y is equivalently a compatible family of

finite projective modules over R[s,r]
Y or R[s,r]

A for s < r. We can similarly define the notion of vector

bundles or φ-bundles over Ur
Y∧ = lim−→s,n

U[s,r]
Yn

.

Lemma 5.2. Let g : Ur
Y∧ → Y∧ be the projection.

(1) Suppose that Dr
A∧ is a finite projective Rr

A∧-module, then Dr
A∧ is I-adically complete and

is the global section of a vector bundle (R[s,r]
A/In ⊗Rr

A∧ Dr
A∧)s,n over Ur

Y∧ . Moreover for

r′ ≤ r, Rr′

A∧ ⊗Rr
A∧ Dr

A∧ = lim←−n
Dr′

A/In
.

(2) Taking global sections on Y∧ induces an equivalence between the category of Rr
Y∧-modules

of the form Dr
Y∧ = lim←−n

Dr
Yn

where Dr
Yn

are Rr
Yn

-modules associated to projective Rr
A/In-

modules and Dr
Yn+1

/In = Dr
Yn

for all n and the category of finite projective Rr
A∧-modules.

(3) The direct image functor g∗ induces an equivalence of categories between φ-bundles over
Ur

Y∧ and finite projective φ-modules over Rr
Y∧ .

Proof. (1) If Dr
A∧ is a finite projective Rr

A∧-module, we may find another finite module D′ such
that Dr

A∧ ⊕D′ ≃ (Rr
A∧)n for some n. Since (Rr

A∧)n is I-adically complete [Sta24, Tag 05GG], so

is its direct summand. Hence Dr
A∧ = lim←−n

Dr
A/In = lim←−n,s

D
[s,r]
A/In = lim←−n,s

Dr
A/In ⊗Rr

A/In
R[s,r]

A/In =

lim←−s
(Dr

A∧ ⊗Rr
A∧ R

[s,r]
A∧ ) (for the last equality we use that Dr

A∧ ⊗Rr
A∧ R

[s,r]
A∧ is I-adically complete

being finite projective over R[s,r]
A∧ ). The statement for Dr′

A∧ follows similarly.
(2) Suppose that (Dr

Yn
)n is a collection of finite projective Rr

Yn
-modules (giving vector bundles

on Ur
Yn

) such that Dr
Y∧ := lim←−n

Dr
Yn

. Write Dr
A/In := Γ(Yn, D

r
Yn

). By the definition of inverse

limit of sheaves, for any affinoid open Sp(B) ⊂ Y, Γ(Sp(B/I), Dr
Y∧) = lim←−n

Γ(Sp(B/In), Dr
Yn

) =

Dr
B∧ := lim←−n

Rr
B/In ⊗Rr

A/In
Dr

A/In . Hence the section is finite projective over Rr
B∧ and Dr

B∧/In =

Rr
B/In ⊗Rr

A/In
Dr

A/In by (2) of Lemma B.7. Then Dr
B∧ = Dr

A∧ ⊗Rr
A∧ R

r
B∧ (both sides are I-

adically complete by (1)). Take B = A we see the global section is finite projective. The essential
surjectivity follows from (1): given a (φ,Γ)-moduleDr

A∧ finite projective overRr
A∧ , Dr

A∧/In defines
sheaves Dr

Yn
and Γ(Y∧, lim←−n

Dr
Yn

) = Dr
A∧ . The fully faithfulness follows as for (2) of Lemma B.4.

(3) Let Dr
Y∧ = (D[s,r]

Yn
)s,n be a φ-bundle on Ur

Y∧ . By [KPX14, Prop. 2.2.7], the global section of

(D[s,r]
Yn

)s for a fix n defines via g∗ a finite projective φ-module denoted by Dr
Yn

over Rr
Yn

. By the

equivalence of loc. cit., we have Dr
Yn

/In−1 = Dr
Yn−1

. Hence the Rr
Y∧-module Dr

Y∧ := lim←−n
Dr

Yn

is finite projective over Rr
Y∧ by (2). Thus g∗ sends φ-bundles to fintie projective φ-modules (see

also Lemma 5.8 below). The fully faithfulness of g∗ follows from mod In-cases in [KPX14, Prop.

https://stacks.math.columbia.edu/tag/05GG
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2.2.7] and that for two φ-modules D1, D2 (which are I-adically complete by (1))

HomRr
Y∧ (D

r
1, D

r
2) = lim←−

n

HomRr
Y∧ (D

r
1, D

r
2/I

n) = lim←−
n

HomRr
Yn

(Dr
1/I

n, Dr
2/I

n).

The essential surjectivity follows from (1) and (2). □

Remark 5.3. Since we will only deal with finite projective modules, we ignore if we can define the

notion of coadmissible modules over the topological ring Rr
A∧ = lim←−s,n

R[s,r]
A/In as for modules over

Rr
A in [ST03, §3].

We construct below our major players: some (φ,Γ)-module Dr
Ỹ∧ over a formal rigid space Ỹ∧

projective over Y∧ and we will study its direct image along the map Ỹ∧ → Y∧.

Construction 5.4. Fix h = (h1, h2) ∈ Z2, h1 < h2. Let Y = Sp(A) ∈ RigL be an affinoid with
a (φ,Γ)-module ∆A of rank 2 over Y base changed from a (φ,Γ)-module ∆r

A over Rr
A for some

r > 0. We assume that r is taken such that the number m(r) is large enough for D
m(r),+
dif (∆r

A) in
the sense of Definition A.4.

Let I be the ideal of A generated by zeroth and the first coefficients of the Sen polynomial
of ∆A. Let Yn = Sp(A/In) and Y∧ = lim−→Yn. By definition, Y∧ = Y ×X2

(X2)
∧
0 . According

to Proposition 3.12, Ỹ∧ := f−1
h (Y∧) = Y∧ ×(X2)∧0

(X2)
∧
h = Y∧ ×g/G g̃/G. In the following, we

construct explicitly these spaces and the universal (φ,Γ)-module DỸ∧ over RỸ∧ .

Ỹ∧ (X2)
∧
h g̃/G

Y∧ (X2)
∧
0 g/G.

fh

DpdR

fh f

DpdR

Write ∆r
Yn

for the base change of ∆r
A. Proposition A.6 gives a vector bundle DpdR(∆Yn

) on Yn

together with a nilpotent operator νYn
such that DpdR(∆Yn

) ⊗OYn
OYn−1

= DpdR(∆Yn−1
) for

n ≥ 2. Let Y□
n be the GL2-torsor over Yn trivializing DpdR(DYn

). Then Y□
n ×Yn

Yn−1 = Y□
n−1.

The nilpotent operator νYn
induces Y□

n → g. Let Ỹ□
n = Y□

n ×g g̃ and Ỹn = [Ỹ□
n /GL2]. Then Ỹn

is a rigid analytic space projective over Yn and Ỹn ×Yn Yn−1 = Ỹn−1. Let Ỹ∧ = lim−→ Ỹ∧
n (see

Remark 5.5 below). Let ∆r
Ỹn

be the pullback and ∆r
Ỹ∧ := lim←−n

∆r
Ỹn

.

On each Ỹn, the universal ν-stable filtration of DpdR(∆Ỹn
) provided from g̃ gives a Γ-invariant

(Km ⊗Qp
OỸn

)[[t]]-lattice of weight h inside Dm
dif(∆Ỹn

) by Proposition A.6, and by Proposition

A.3 we obtain a modification Dr
Ỹn

of ∆r
Ỹn

on Ỹn which is a (φ,Γ)-module over Rr
Ỹn

. Let Dr
Ỹ∧ =

lim←−n
Dr

Ỹn
. We write Dr

Ỹ∧
n

for Dr
Ỹ∧

n

viewed as coherent sheaves on Ur
Ỹn

and similarly Dr
Ỹ∧ =

lim←−n
Dr

Ỹn
.

Finally, let DỸ∧ = lim−→r
Dr

Ỹ∧ , a (φ,Γ)-module in the sense of Definition 5.1.

Remark 5.5. With the trivialization of DpdR(DA∧) as in Remark 3.29, ν induces maps Yn → g

and Ỹn = Yn ×g g̃. And Ỹ∧ = lim−→Yn ×g g̃. We also note that in this (local) case, A∧-linear

operator on (A∧)2 = DpdR(DA∧) induces a scheme map Spec(A∧)→ galg. The proper formal rigid

space Ỹ∧ over Y∧ is the relative analytification of the formal completion of a projective scheme
Spec(A∧)×galg g̃alg ⊂ P1

Spec(A∧) over Spec(A
∧) in the way discussed before Corollary B.6.

By discussions in Appendix B, Dr
Ỹ∧ = lim←−n

Dr
Ỹn

is a coherent OUr

Ỹ∧
-module and is locally free

of rank two (Lemma 5.2).

We still write fh : Ỹ∧ → Y∧ for the morphism of ringed spaces with the sheaves of abstract
rings Rr

Ỹ∧ or OỸ∧ , and Rr
Y∧ or OY∧ , via the map f−1

h Rr
Y∧ → Rr

Ỹ∧ or f−1
h OY∧ → OỸ∧ .

Definition 5.6. We write Rfh,n,∗D
r
Ỹn

, resp. Rfh,∗D
r
Ỹ∧ , resp. Rfh,∗DỸ∧ to be the derived direct

image of the sheaf of OỸn
-module Dr

Ỹn
, resp. OỸ∧-module Dr

Ỹ∧ , resp. OỸ∧-module DỸ∧ along

the map fh [Sta24, Tag 071J].

Remark 5.7. The direct image will only work well after Lemma 5.8 below. The sheaves fh,n,∗D
r
Ỹn

and fh,∗D
r
Ỹ∧ remain to have the Γ-actions but may not be (φ,Γ)-modules as in Definition 5.1,

https://stacks.math.columbia.edu/tag/071J


26 ZHIXIANG WU

namely they may not be projective over Rr
Yn

or Rr
Y∧ and the map

φ : Rifh,∗D
r
Ỹ∧ → Rifh,∗(Rr/p

Ỹ∧ ⊗Rr

Ỹ∧
Dr

Ỹ∧)

induced by φ : Dr
Ỹ∧ → R

r/p

Ỹ∧ ⊗Rr

Ỹ∧
Dr

Ỹ∧ a priori may not factor through Rr/p
Y∧ ⊗Rr

Y∧ Rifh,∗D
r
Ỹ∧ .

We use fr
h,n : Ur

Ỹn
→ Ur

Yn
to denote the base change of fh and similarly fr

h : Ur
Ỹ∧ → Ur

Y∧ .

By Corollary B.6, Rfr
h,∗ sends coherent OUr

Ỹ∧
-modules to coherent OUr

Y∧ -modules. Consider the

diagram

Ur
Ỹ∧ Ỹ∧

Ur
Y∧ Y∧

fr
h

g̃

fh

g

of ringed sites with structure sheaves OUr

Ỹ∧
,OỸ∧ , etc.

Lemma 5.8. Let DỸ∧ ,DỸ∧ be as in Construction 5.4.

(1) For each n ≥ 1, Rg̃∗Dr
Ỹn

= Dr
Ỹn

as modules over Rr
Ỹn

. Similarly Rg̃∗Dr
Ỹ∧ = Dr

Ỹ∧ . Hence

Rfh,∗D
r
Ỹ∧ = Rg∗Rfr

h,∗Dr
Ỹ∧ and Rfh,∗D

r
Ỹn

= Rg∗Rfr
h,∗Dr

Ỹn
for all n ≥ 1.

(2) As sheaves of Rr
Y∧-modules with Γ-actions, Rifh,∗D

r
Ỹ∧ = g∗R

ifr
h,∗Dr

Ỹ∧ and are isomorphic

to the inverse limit lim←−n
g∗R

ifr
h,∗Dr

Ỹn
.

(3) For r′ ≤ r and i ≥ 0, the natural map Rr′

Y∧ ⊗Rr
Y∧ Rifh,∗D

r
Ỹ∧ → Rifh,∗(Rr′

Ỹ∧ ⊗Rr

Ỹ∧
Dr

Ỹ∧)

is an isomorphism provided that Rifr
h,∗Dr

Ỹ∧ is a locally finite free OUr
Y∧ -module. In this

case, Rifh,∗D
r
Ỹ∧ is a (φ,Γ)-module over Rr

Y∧ .

(4) For each i, Rifh,∗DỸ∧ = lim−→r
Rifh,∗D

r
Ỹ∧ . Under the assumption in (3), the direct image

Rifh,∗DỸ∧ is a (φ,Γ)-module and Rifh,∗DỸ∧ = RY∧ ⊗Rr
Y∧ Rifh,∗D

r
Ỹ∧ .

Proof. (1) The first statement is classical and follows from the vanishing of higher coherent coho-
mologies of quasi-Stein spaces Ur [Kie67]. The derived direct image commutes with derived inverse
limit [Sta24, Tag 0BKP]. The inverse systems (Dr

Ỹn
)n and (Dr

Ỹn
)n are Mittag-Leffler. We get that

Rg̃∗Dr
Ỹ∧ = Rg̃∗R lim←−n

Dr
Ỹn

= R lim←−n
Rg̃∗Dr

Ỹn
= Dr

Ỹ∧ .

(2) By Corollary B.6 (and its proof), for each i ≥ 0, Rifr
h,∗Dr

Ỹ∧ is a coherent OUr
Y∧ -module and

Rifr
h,∗Dr

Ỹ∧ = lim←−n
Rifr

h,∗Dr
Ỹn

is an inverse limit of a Mittag-Leffler inverse system. We see

Rg∗R
ifr

h,∗Dr
Ỹ∧ = Rg∗R lim←−

n

Rifr
h,∗Dr

Ỹn
= R lim←−

n

Rg∗R
ifr

h,∗Dr
Ỹn

= R lim←−
n

g∗R
ifr

h,∗Dr
Ỹn

= lim←−
n

g∗R
ifr

h,∗Dr
Ỹn

.

The last equality follows from that the exact functor g∗ sends a Mittag-Leffler system to a Mittag-
Leffler system.

(3) Suppose that Rifr
h,∗Dr

Ỹ∧ is a vector bundle. The isomorphism φ : φ∗Dr
Ỹ∧ ≃ Dr

Ỹ∧ |Ur/p

Ỹ∧

induces via Rf
r/p
h,∗ isomorphisms φ∗Rfr

h,∗Dr
Ỹ∧ ≃ Rf

r/p
h,∗ (Dr

Ỹ∧ |Ur/p

Ỹ∧
) = (Rfr

h,∗Dr
Ỹ∧)|Ur/p

Y∧
(by flat

base changes). By (3) of Lemma 5.2 and (2), Rifh,∗D
r
Ỹ∧ is a finite projective Dr

Y∧-module which

also ensures that Rr′

Y∧ ⊗Rr
Y∧ Rifh,∗D

r
Ỹ∧ is finite projective corresponding to the restriction of

Rifr
h,∗Dr

Ỹ∧ to Ur′

Y∧ . The isomorphism follows from that Rr′

Ỹ∧ ⊗Rr

Ỹ∧
Dr

Ỹ∧ corresponds to the

restriction of Dr
Ỹ∧ to Ur′

Ỹ∧ via (g̃|Ur′
Ỹ∧

)∗ and the φ-structure on Rifh,∗D
r
Ỹ∧ comes from the φ-

structure on Rifr
h,∗Dr

Ỹ∧ via (g|Ur/p

Y∧
)∗.

(4) The map Ỹ1 → Y1 is a proper map between quasi-compact spaces, the direct image of
OỸ∧ -modules can be computed as Rifh,∗DỸ∧ = Rifh,∗ lim−→r

Dr
Ỹ∧ = lim−→r

Rifh,∗D
r
Ỹ∧ by [Sta24,

Tag 0739, Tag 07TA] and [GV06, Exposé V, Prop. 5.1] (and [Bos14, Prop. 6.3/4]). The last
equality follows from that colimits commute with tensor product. □

https://stacks.math.columbia.edu/tag/0BKP
https://stacks.math.columbia.edu/tag/0739
https://stacks.math.columbia.edu/tag/07TA
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5.2. Direct image and translation. In this subsection we prove our main results on geometric
translations of (φ,Γ)-modules in the Construction 5.4. Discussions in §3.4 are served for the
following hypothesis.

Hypothesis 5.9. We assume that the map Y∧,□ := lim−→n
Y□

n → g in Construction 5.4 is flat, in

the sense that it satisfies the conclusion of Corollary 3.28 (and hence Remark 3.29).

Proposition 5.10. Assume Hypothesis 5.9 and let h = (h1, h2) such that k = h2 − h1 ∈ Z≥1.
Then Rfr

h,∗Dr
Ỹ∧ concentrates in degree zero and is a locally finite projective module of rank 4 over

OUr
Y∧ .

Proof. By a twist, we assume that h1 = 0. Then by construction, there are inclusions of vector
bundles tk∆r

Ỹn
↪→ Dr

Ỹn
↪→ ∆r

Ỹn
.

Note that ∆r
Ỹn

/tk∆r
Ỹn

=
∏

m≥m(r) D
m,+
dif (∆Ỹn

)/tk (cf. [Liu15, Prop. 2.15]) and taking in-

verse limit ∆r
Ỹ∧/t

k∆r
Ỹ∧ =

∏
m≥m(r) D

m,+
dif (∆Ỹ∧)/t

k. The latter can be viewed as a coherent

OUr

Ỹ∧
-module supported on disjoint divisors cut out by Qm(X)k for m ≥ m(r), where t =

X
∏

m≥1 Qm(X), see Appendix A.1. Write U∧,m for the completion of Ur along locus Sp(L⊗QpKm)

cut out by Qm(X). The sheaf Dm,+
dif (∆Ỹ∧) is exactly the Qm(X)-adic completion of ∆r

Ỹ∧ and we

can identify Dm,+
dif (∆Ỹ∧)/t as the pullback of ∆Ỹ∧ to Ỹ∧ ×L Sp(L⊗Qp

Km) ⊂ Ỹ∧ ×L Ur.

On Ỹ∧ the rank two projective OỸ∧ -module DpdR := DpdR(∆Ỹ∧) is equipped with a universal

submodule Fil0 stabilized by νỸ∧ (now νỸ∧ is only topologically nilpotent). Set the decreasing

filtration Fil• on DpdR(∆Ỹ∧) by Fil−k = DpdR ⊋ Fil−k+1 = · · · = Fil0 ⊋ Fil1 = {0}. Under the

equivalence in Proposition A.6, for each m, the filtration Fil• gives the projective sub-OỸ∧×LU∧,m-

module Dm,+
dif (DỸ∧), a modification of Dm,+

dif (∆Ỹ∧). By the identification in Step 1 of the proof of

Proposition A.6 and the assumption that m(r) is large enough (which holds modulo In and after
taking inverse limit as well), as SỸ∧,m := OỸ∧×LU∧,m = (OỸ∧ ×Qp

Km)[[t]]-modules

Dm,+
dif (DỸ∧) = DpdR ⊗O

Ỹ∧ tkSỸ∧,m + Fil0 ⊗O
Ỹ∧ SỸ∧,m

and

(5.1) Dm,+
dif (∆Ỹ∧) = DpdR ⊗O

Ỹ∧ SỸ∧,m, Dm,+
dif (tk∆Ỹ∧) = DpdR ⊗O

Ỹ∧ tkSỸ∧,m.

Since the sequence 0 → Fil0 → DpdR → DpdR/Fil
0 → 0 splits locally as OỸ∧-modules, the

injection

(5.2) Fil0 ⊗O
Ỹ∧ (OỸ∧ ⊗Qp Km)[[t]]/tk → Dm,+

dif (DỸ∧)/t
kDm,+

dif (∆Ỹ∧)

is an isomorphism.
To show that Rfr

h,∗Dr
Ỹ∧ is locally free of rank 4, we can work locally on Ur

Y∧ . Take s < r. Write

D[s,r]

Ỹ∧ ,∆
[s,r]

Ỹ∧ for their restriction to U[s,r]

Ỹ∧ and f
[s,r]
h : U[s,r]

Ỹ∧ → U[s,r]
Y∧ . It’s enough to show Rf

[s,r]
h,∗ D

[s,r]

Ỹ∧

is projective of rank 4 over OU[s,r]

Y∧
for all r, s such that m(s) = m(r) + 1. We may assume that the

torsor Y∧,□ → Y∧ is trivial as in Remark 3.29. Choose an affinoid open U = Sp(B) ⊂ GL2 and

consider the restriction f
[s,r]
h,U : U[s,r]

Ỹ∧×U
→ U[s,r]

Y∧×U . We get the diagram

U[s,r]

Ỹ∧×U

U[s,r]

Ỹ∧ U[s,r]
Y∧×U g̃

U[s,r]
Y∧ g

f
[s,r]
h,Uα̃

β̃

f
[s,r]
h α

β
f

where the parallelograms are Cartesian (modulo In).
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The formal rigid space U[s,r]
Y∧ (resp. U[s,r]

Y∧×U ) is the completion of an affinoid space and U[s,r]

Ỹ∧

(resp. U[s,r]

Ỹ∧×U
) comes from a projective scheme over Spec(O(U[s,r]

Y∧ )) (resp. Spec(O(U[s,r]
Y∧×U ))) in

the sense before Corollary B.6. Hence Rif
[s,r]
h,∗ D

[s,r]

Ỹ∧ is a coherent OU[s,r]

Y∧
-module for all i ≥ 0 and

can be computed on the scheme level. The same statement holds similarly for Rif
[s,r]
h,U,∗α̃

∗D[s,r]

Ỹ∧ .

Also the maps U[s,r]
Yn×U → g→ galg in Remark 3.29 factor through Spec(O(U[s,r]

Yn×U ))→ galg. Then

α∗Rif
[s,r]
h,∗ D

[s,r]

Ỹ∧ = Rif
[s,r]
h,U,∗α̃

∗DỸ∧ by the flat base change [Sta24, Tag 02KH] and Rif
[s,r]
h,∗ D

[s,r]

Ỹ∧ is

projective of rank 4 if and only if so is Rif
[s,r]
h,U,∗α̃

∗D[s,r]

Ỹ∧ = Rif
[s,r]
h,U,∗D

[s,r]

Ỹ∧×U
by the faithfully flat

descent [Sta24, Tag 058S] and Lemma 5.11 below.
Consider the short exact sequences of coherent OU[s,r]

Ỹ∧×U

-modules from the first part of the proof

(e.g., (5.2) and m = m(r))

0→ tk∆
[s,r]

Ỹ∧×U
→ D[s,r]

Ỹ∧×U
→ Fil0 ⊗O

Ỹ∧ (OỸ∧×U ⊗Qp
Km)[[t]]/tk → 0,

0→ D[s,r]

Ỹ∧×U
→ ∆

[s,r]

Ỹ∧×U
→ DpdR/Fil

0 ⊗O
Ỹ∧ (OỸ∧×U ⊗Qp

Km)[[t]]/tk → 0.

By our construction of Ỹ∧,□, the pullback DpdR ⊗O
Ỹ∧ OỸ∧×U admits a tautological trivializa-

tion DpdR ⊗O
Ỹ∧ OỸ∧×U ≃ O

⊕2

Ỹ∧×U
and the subsheaf Fil0 ⊗O

Ỹ∧ OỸ∧×U = D̃∗
pdROg̃(−1) is the

tautological subbundle pulled back from g̃ → G/B = P1 where we write DpdR for the flat map

Spec(O(Y∧ × U)) → g (induced by the nilpotent operator ν) and D̃pdR for the base change of
DpdR.

Let fh,U : Ỹ∧×U → Y∧×U be the base change of fh. The sheaf Fil0⊗O
Ỹ∧ (OỸ∧×U ⊗Qp

Km)

is supported on the closed subscheme of U[s,r]

Ỹ∧×U
cut out by Qm(X) and

Rf
[s,r]
h,U,∗Fil

0 ⊗O
Ỹ∧ (OỸ∧×U ⊗Qp

Km)[[t]]/tk = (Rfh,U,∗D̃
∗
pdROg̃(−1))⊗Qp

Km[[t]]/tk

as a coherent sheaf supported on the closed subscheme of U[s,r]
Y∧×U cut out by Qm(X)k. By the

flat base change and (1) of Proposition 2.4, Rfh,U,∗D̃
∗
pdROg̃(±1) = D∗

pdRRf∗Og̃(±1) concentrate

in degree zero and are locally free of rank two over Y∧ × U .

By the projection formula, Rf
[s,r]
h,U,∗∆

[s,r]

Ỹ∧×U
= ∆

[s,r]
Y∧×U⊗O

U[s,r]
Y∧×U

Rf
[s,r]
h,U,∗Rf

[s,r],∗
h,U OU[s,r]

Y∧×U

. Since β

is flat by the assumption that the mapY∧,□ → g is flat, Rf
[s,r]
h,U,∗Rf

[s,r],∗
h,U OU[s,r]

Y∧×U

= β∗Rf∗Rf∗Og =

β∗f∗Og̃ is free of rank two over OU[s,r]

Y∧×U

. Then we get short exact sequences

0→ f
[s,r]
h,U,∗t

k∆
[s,r]

Ỹ∧×U
→ f

[s,r]
h,U,∗D

[s,r]

Ỹ∧×U
→ D∗

pdRf∗Og̃(−1)⊗Qp
Km[[t]]/tk → 0,(5.3)

0→ f
[s,r]
h,U,∗D

[s,r]

Ỹ∧×U
→ f

[s,r]
h,U,∗∆

[s,r]

Ỹ∧×U
→ D∗

pdRf∗Og̃(1)⊗Qp
Km[[t]]/tk → 0.

Finally to see that f
[s,r]
h,U,∗D

[s,r]

Ỹ∧×U
is locally free of rank 4 over OU[s,r]

Y∧×U

, by [BL95], it is enough to

consider its completion along the divisor (Ỹ∧ ×L U)×L Sp(L⊗Qp
Km) cut out by Qm(X), which

is a (OỸ∧×U ×Qp
Km)[[t]]-module. Then the result follows from Lemma 3.17, that f

[s,r]
h,U,∗∆

[s,r]

Ỹ∧×U

is free of rank 4 over OU[s,r]

Y∧×U

and that D∗
pdRf∗Og̃(1)⊗Qp

Km[[t]]/tk is finite flat over OY∧×U ×Qp

Km[[t]]/tk. □

Lemma 5.11. Let g : X = Sp(B) → Y = Sp(A) be a flat (resp. faithfully flat) morphism of
affinoid spaces and let I ⊂ A be an ideal. Let A∧, B∧ be the I-adic completions. Then the ring
maps A→ B and A∧ → B∧ are flat (resp. faithfully flat).

Proof. By definition, for any x ∈ X and f(x) ∈ Y corresponding to maximal ideals m ⊂ B, n ⊂ A,
the local ring map OY,f(x) → OX,y is flat. Since both rings are Noetherian, flatness can be checked
after completion and thus also on the Zariski local rings An → Bm. By [Sta24, Tag 00HT], B is flat
over A. The assertion about flatness after completion is by Lemma B.7. For faithfully flatness, if
Spec(B∧)→ Spec(A∧) is surjective on closed points and flat, it is surjective by [Sta24, Tag 00HS].

https://stacks.math.columbia.edu/tag/02KH
https://stacks.math.columbia.edu/tag/058S
https://stacks.math.columbia.edu/tag/00HT
https://stacks.math.columbia.edu/tag/00HS
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As I is topologically nilpotent in A∧ and A∧ is I-adically complete, I is in the Jacobson radical of
A∧. The surjectivity on closed points follows from the surjectivity of Spec(B/I)→ Spec(A/I). □

Over Ỹ∧ the topologically nilpotent operator νY∧ acts on the universal sub-line bundle Fil0

of DpdR(∆Ỹ∧) and the quotient DpdR(∆Ỹ∧)/Fil
0. This gives elements zỸ∧ + hỸ∧ ∈ O(Ỹ∧) ≃

EndO
Ỹ∧ (Fil

0) and zỸ∧ − hỸ∧ ∈ O(Ỹ∧) ≃ EndO
Ỹ∧ (DpdR(∆Ỹ∧)/Fil

0). We view zỸ∧ and hỸ∧ as

global sections of fh,∗OỸ∧ (cf. Corollary B.6). As a corollary of the proof of Proposition 5.10 and

(3) of Proposition 2.4, we get the following explicit description of Rfh,∗D
r
Ỹ∧ when h = (0, k).

Corollary 5.12. Suppose h = (0, k), k ≥ 1 and assume Hypothesis 5.9. Then Rfh,∗∆
r
Ỹ∧ =

∆r
Y∧ ⊗OY∧ fh,∗OỸ∧ is a (φ,Γ)-module of rank 4 over Rr

Y∧ . And Rfh,∗D
r
Ỹ∧ is the rank 4 sub-

(φ,Γ)-module of fh,∗∆
r
Ỹ∧ containing tkfh,∗∆

r
Ỹ∧ determined by

(5.4) fh,∗D
r
Ỹ∧/t

kfh,∗∆
r
Ỹ∧ = ⊕k−1

i=0 (fh,∗∆
r
Ỹ∧/t

kfh,∗∆
r
Ỹ∧)[∇Sen = (zỸ∧ + hỸ∧) + i].

Proof. We write ∆̃r
Y∧ for ∆r

Y∧ ⊗OY∧ fh,∗OỸ∧ . By Proposition 5.10, the map fh,∗D
r
Ỹ∧ → ∆̃r

Y∧

induced by Dr
Ỹ∧ ⊂ ∆r

Ỹ∧ is injective and the image contains tk∆̃r
Y∧ . Hence it suffices to determine

the image of

(5.5) fh,∗D
r
Ỹ∧/t

k∆̃r
Y∧ ↪→ ∆̃r

Y∧/tk∆̃r
Y∧ =

∏
m≥m(r)

Dm,+
dif (∆̃Y∧)/tk.

The operator ∇Sen acts on each Dm,+
dif (∆̃Y∧)/tk. Under the identification (5.1), DpdR(∆̃Y∧) ⊗Qp

Km[[t]]/tk = (DpdR(∆Y∧)⊗Qp Km[[t]]/tk)⊗OY∧ fh,∗OỸ∧ , and the Sen operator ∇Sen corresponds

to the topologically nilpotent operator νY∧ on DpdR(∆Y∧) where we extend the action of νY∧ on
v ⊗ g ∈ DpdR(∆Y∧)⊗A∧ (A∧ ⊗Qp Km)[[t]] by νY∧(v ⊗ g) = νY∧(v)⊗ g + v ⊗∇(g) (see Step 1 of
the proof of Proposition A.6, and note ∇Sen(tx) = t(∇Sen + 1)(x)). The identity (5.4) will follow
from that the image of (5.5) is equal to the submodule∏

m≥m(r)

⊕k−1
i=0 (DpdR(∆̃Y∧)⊗Qp Km[[t]]/tk)[νY∧ = (zỸ∧ + hỸ∧ + i)].

We view objects appeared in (5.5) as coherent sheaves on Ur
Y∧ supported on divisors cut out

by Qm(X) for m ≥ m(r). By faithfully flat descent, we only need to verify the equality after base
change to Y∧ × U as in the proof of Proposition 5.10 and we adapt the notation there. By (5.3),
we see

fh,U,∗D
r
Ỹ∧×U

/tk∆̃r
Y∧×U =

∏
m≥m(r)

D∗
pdRf∗Og̃(−1)⊗Qp

Km[[t]]/tk.

By (3) of Proposition 2.4, the righthand side is the sheaf∏
m≥m(r)

D∗
pdR((f∗f

∗(O⊕2
g ))[ν = (h+ z)])⊗Qp Km[[t]]/tk.

Since DpdR is flat, D∗
pdRf∗f

∗(O⊕2
g ) = fh,U,∗f

∗
h,UDpdR(∆Y∧×U ) = DpdR(∆̃Y∧×U ) (under the

canonical trivialization DpdR(∆Y∧×U ) ≃ D∗
pdRO⊕2

g ) and that ν, z, and h are pulled back to
νY∧×U , zỸ∧ , and hỸ∧ respectively, we get

fh,U,∗D
r
Ỹ∧×U

/tk∆̃r
Y∧×U =

∏
m≥m(r)

DpdR(∆̃Y∧×U )[νY∧×U = (hỸ∧ + zỸ∧)]⊗Qp
Km[[t]]/tk

=
∏

m≥m(r)

⊕k−1
i=0 (t

iDpdR(∆̃Y∧×U )⊗Qp
Km)[νY∧×U = (hỸ∧ + zỸ∧) + i]

Hence the description (5.4) holds. □

We define translations of formal completions of (φ,Γ)-modules.

Definition 5.13. Let X∧ = lim−→n
Xn be the formal completion of a quasi-compact rigid space X

with respect to a coherent ideal sheaf I (Definition B.1). Let Dr
X∧ be a (φ,Γ, g)-module over

Rr
X∧ (Definition 5.1). Assume that Dr

X1
is locally Z(g)-finite (in the sense that there is a finite

admissible covering of X1 by open affinoids such that Dr
X1

is locally Z(g)-finite when restricted to
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these affinoids). Let λ, µ ∈ X∗(t) be integral weights. We define the translation of Dr
X∧ from the

infinitesimal character associated to λ to that of µ by

Tµ
λD

r
X∧ := lim←−

n

Tµ
λD

r
Xn

.

And if DX∧ = RX∧ ⊗Rr
X∧ Dr

X∧ ,

Tµ
λDX∧ := lim−→

r′≤r

Tµ
λD

r′

X∧ .

The translation is always a (φ,Γ)-module with a g-action (cf. Proposition 4.12).

Recall that if λ− µ is (0, k) or (k, 0) for some k ≥ 0, then Tµ
λD

r
Xn

= pr|µ|(pr|λ|D
r
Xn
⊗L Vk).

Lemma 5.14. Let fh : Ỹ∧ → Y∧ be the map in Construction 5.4. Suppose that D
′,r

Ỹ∧ is a

(φ,Γ, g)-module over Rr
Ỹ∧ such that Rfh,∗D

′,r

Ỹ∧ is a (φ,Γ)-module over Y∧ (cf. Lemma 5.8).

(1) The natural isomorphism Rfh,∗(D
′,r

Ỹ∧ ⊗L Vk) ≃ (Rfh,∗D
′,r

Ỹ∧) ⊗L Vk of OY∧-modules (pro-

vided by Vk ≃ L⊕(k+1)) is an isomorphism of (φ,Γ, g)-modules.

(2) Furthermore, if D
′,r

Ỹ1
is locally Z(g)-finite with a generalized infinitesimal character given

by λ, then the isomorphism in (1) induces an isomorphism Rfh,∗T
µ
λD

′,r

Ỹ∧ ≃ Tµ
λRfh,∗D

′,r

Ỹ∧ .

Proof. (1) We verify the isomorphism fh,∗(D
′,r

Ỹ∧ ⊗L Vk) ≃ (fh,∗D
′,r

Ỹ∧) ⊗L Vk is an isomorphism of

(φ,Γ, g)-module. Recall V k = SymkL2 = R+
L/X

k+1. Then D
′,r

Ỹ∧ ⊗L Vk = ⊕k
i=0D

′,r

Ỹ∧ ⊗L XiL and

fh,∗(D
′,r

Ỹ∧ ⊗L Vk) = ⊕k
i=0fh,∗D

′,r

Ỹ∧ ⊗L XiL ≃ fh,∗D
′,r

Ỹ∧ ⊗L Vk with obvious maps. And the sheaf

fh,∗(D
′,r

Ỹ∧ ⊗L Vk) is determined by its section over Y∧ as for fh,∗D
′,r

Ỹ∧ (Lemma 5.2). For g ∈ g

and
∑k

i=0 ai ⊗ Xi ∈ fh,∗D
′,r

Ỹ∧ ⊗L Vk, we have g.(
∑k

i=0 ai ⊗ Xi) =
∑k

i=0 g.ai ⊗ Xi +
∑k

i=0 ai ⊗

g.Xi =
∑k

i=0(g.ai +
∑

j cjiaj) ⊗ Xi where g.Xi =
∑

i,j cijX
j . The g action on

∑k
i=0 ai ⊗ Xi ∈

fh,∗(D
′,r

Ỹ∧ ⊗L Vk) (resp. on ai ∈ fh,∗D
′,r

Ỹ∧) is given by the same formula viewing
∑k

i=0 ai ⊗ Xi

(resp. ai) as global sections on Ỹ∧. Hence the g-actions coincide. Similar statements hold for
the actions of φ and Γ. It remains to show that the map is Rr

Y∧-linear. By Lemma 5.8, we have

fh,∗(D
′,r

Ỹ∧⊗LVk) = lim←−n
fh,∗(D

′,r

Ỹn
⊗LVk) and fh,∗D

′,r

Ỹ∧ = lim←−n
fh,∗D

′,r

Ỹn
as sheaves of Rr

Y∧-module.

Let f = (fn)n ∈ Rr
Y∧ = lim←−n

Rr
Yn

act on lim←−n
fh,∗D

′,r

Ỹn
. For

∑k
i=0 ai⊗Xi ∈ fh,∗D

′,r

Ỹ∧ ⊗L Vk, write

similarly ai = (ai,n)n ∈ lim←−n
fh,∗D

′,r

Ỹn
. By the proof of Proposition 4.6, the action of fn on ai,n⊗Xi

is given by fn.(ai,n ⊗Xi) =
∑k

j=0
1
j! (X + 1)jf

(j)
n (X)ai,n ⊗Xj+i. Same equation holds if we view

ai,n⊗Xi as a global section of D
′,r

Ỹn
⊗LVk for the action of fn via f−1

h Rr
Yn
→ Rr

Ỹn
. Taking inverse

limit we get the compatibility of Rr
Y∧-actions.

(2) If D
′,r

Ỹn
is locally Z(g)-finite, since Ỹn is quasi-compact, Rifh,∗D

′,r

Ỹn
is locally Z(g)-finite (one

can choose a finite affinoid covering of Ỹn to calculate the cohomology). By taking inverse limit,

we have a direct sum decomposition D
′,r

Ỹ∧ ⊗L Vk = ⊕µ′Tµ′

λ D
′,r

Ỹ∧ for finitely many µ′. We conclude

by noticing that Z(g) acts on fh,∗T
µ
λD

′,r

Ỹ∧ = lim←−n
fh,∗T

µ
λD

′,r

Ỹn
locally profinitely with generalized

infinitesimal character µ. □

Theorem 5.15. Let λ = λh = (h2 − 1, h1) for h = (h1, h2) ∈ Z2, h1 < h2 and µ = λ(0,0) =

(−1, 0) be weights in X∗(t). Let fh : Ỹ∧ → Y∧ and Dr
Ỹ∧ ,∆

r
Y∧ be the map and (φ,Γ)-modules in

Construction 5.4. We equip Dr
Ỹ∧ and ∆r

Y∧ with the standard g-module structures in Definition

4.4.

(1) There is an isomorphism of (φ,Γ, g)-modules

(5.6) Tµ
λD

r
Ỹ∧ ≃ f∗

h∆
r
Y∧ := ∆r

Ỹ∧ = lim←−
n

∆r
Ỹn

over Rr
Ỹ∧ .
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(2) Under Hypothesis 5.9, the adjunction of f∗
hT

λ
µ∆

r
Y∧ = Tλ

µ∆
r
Ỹ∧ → Dr

Ỹ∧ (as (φ,Γ)-bundles

over Ur
Ỹ∧) induces an isomorphism

(5.7) Tλ
µ∆

r
Y∧ ≃ Rfh,∗D

r
Ỹ∧

of (φ,Γ, g)-modules of rank 4 over Rr
Y∧ .

Proof. (1) The statement follows from the construction ofDr
Ỹ∧ = lim←−n

Dr
Ỹn

, Tµ
λD

r
Ỹ∧ = lim←−n

Tµ
λD

r
Ỹn

and Proposition 4.17.
(2) We first assume that h = (0, 1). By Proposition 5.10 and Hypothesis 5.9, Rfh,∗D

r
Ỹ∧ =

fh,∗D
r
Ỹ∧ . Write ∆̃r

Y∧ for ∆r
Y∧ ⊗OY∧ fh,∗OỸ∧ . The unit map for (φ,Γ)-bundles and the projection

formula induce a map Tλ
µ∆

r
Y∧ → Tλ

µ∆
r
Y∧ ⊗OY∧ fh,∗f

∗
hOY∧ = Tλ

µ ∆̃
r
Y∧ = fh,∗T

λ
µ∆

r
Ỹ∧ (the last

equation is by Lemma 5.14). The isomorphism ∆r
Ỹ∧ ≃ Tµ

λD
r
Ỹ∧ induces Tλ

µ∆
r
Ỹ∧ → Dr

Ỹ∧ and hence

Tλ
µ fh,∗∆

r
Ỹ∧ → fh,∗D

r
Ỹ∧ . The composite of the two maps gives the desired g-map

Tλ
µ∆

r
Y∧ → fh,∗T

λ
µ∆

r
Ỹ∧ → fh,∗D

r
Ỹ∧ .

We show that this map is an isomorphism of (φ,Γ)-modules over Rr
Y∧ .

By Hypothesis 5.9, flat base change and faithfully flat descent as in the proof of Proposition

5.10, statements of Proposition 2.4 hold replacing f : g̃ → g by fh : Ỹ → Y after suitable
modifications. In particular, fh,∗OỸ∧ is locally free of rank two over OY∧ generated by the

element hỸ∧ defined before Corollary 5.12. Write for short z = zỸ∧ and h = hỸ∧ . The composite

Tλ
µ∆

r
Y∧ → Tλ

µ ∆̃
r
Y∧

1
4 c−h2−h
→ Tλ

µ ∆̃
r
Y∧ ↠ ∆̃r

Y∧ sends v0⊗1+v1⊗ t ∈ Tλ
µ∆

r
Y∧ to (−∇+z−h)v0+ tv1

by the proof of Proposition 4.20 (all these maps are inverse limits of maps modulo In). This

map is an injection (∆̃Y∧ = ∆Y∧ ⊕ h∆Y∧) and the image contains t∆̃Y∧ (for thv0 ∈ th∆Y∧ ,

let v1 = (∇−z)tv0
t ). Modulo t∆̃r

Y∧ , the image of Tλ
µ∆

r
Y∧ as a sub-OY∧-module of ∆̃r

Y∧/t =∏
m≥m(r) D

m
Sen(∆̃Y∧)⊗Qp Km is

∏
m≥m(r)(∇− (z−h))Dm

Sen(∆Y∧)⊗Qp Km. By (2) of Proposition

2.4 and the flatness Hypothesis 5.9, this image is identified with
∏

m≥m(r) D
m
Sen(∆̃Y∧)[∇ = (z +

h)] ⊗Qp
Km, i.e., is equal to fh,∗D

r
Ỹ∧/t∆̃

r
Y∧ by Corollary 5.12. By Proposition 4.20 and taking

direct image, the composite fh,∗T
λ
µ∆

r
Ỹ∧ → fh,∗D

r
Ỹ∧ ↪→ fh,∗∆

r
Ỹ∧ is identified with Tλ

µ ∆̃
r
Y∧

1
4 c−h2−h
→

Tλ
µ ∆̃

r
Y∧ ↠ ∆̃r

Y∧ . Hence the composite Tλ
µ∆

r
Y∧ → fh,∗T

λ
µ∆

r
Ỹ∧ → fh,∗D

r
Ỹ∧ is an isomorphism, with

the same image in ∆̃r
Y∧ given by Corollary 5.12. We have finished the case h = (0, 1).

Finally, we treat general h′ = (0, k), k ≥ 1. Write λ′ = λh′ . We have simply fh = fh′ : Ỹ∧ →
Y∧. Write D

′,r

Ỹ∧ for the universal (φ,Γ)-module over Rr
Ỹ∧ of weights h′ and write Dr

Ỹ∧ for the one

with weights h = (0, 1). By Proposition 4.17, D
′,r

Ỹ∧ ≃ Tλ′

λ Dr
Ỹ∧ . Then fh′,∗D

′,r

Ỹ∧ ≃ fh′,∗T
λ′

λ Dr
Ỹ∧ ≃

Tλ′

λ fh′,∗D
r
Ỹ∧ by Lemma 5.14. Since Tλ

µ∆
r
Y∧ ≃ fh,∗D

r
Ỹ∧ , we see fh′,∗D

′,r

Ỹ∧ ≃ Tλ′

λ Tλ
µ∆

r
Y∧ ≃ Tλ′

µ ∆r
Y∧

(Lemma 4.10). Note that this isomorphism is induced by Tλ
µ∆

r
Y∧ ⊗L Vk−1 ≃ fh,∗D

r
Ỹ∧ ⊗L Vk−1

which, by the case for h, is induced by the adjunction of Tλ
µ∆

r
Ỹ∧⊗L Vk−1 → Dr

Ỹ∧⊗L Vk−1. Taking

pr|λ′| everywhere we see the isomorphism fh′,∗D
′,r

Ỹ∧ ≃ Tλ′

µ ∆r
Y∧ is induced by Tλ′

µ ∆r
Ỹ∧ → D

′,r

Ỹ∧ . □

Taking colimit for r > 0 and considering Lemma 5.8, we get the following corollary.

Corollary 5.16. Under Hypothesis 5.9, we have

Tµ
λDỸ∧ ≃ f∗

h∆Y∧

and

Tλ
µ∆Y∧ ≃ Rfh,∗DỸ∧ .

5.3. Specialization to points. We show how to use Theorem 5.15 to recover some results of
Ding. Suppose we are in the situation of Construction 5.4. We fix an L-point y of Y∧ and write
∆ = ∆y for the specialization of ∆Y∧ at the point y. Let iy : y ↪→ Y1 ↪→ Y∧ be the closed

embedding and consider the restriction fy : f−1
h (y)→ y of fh.
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f−1
h (y) Ỹ∧

y Y∧

i′y

fy fh

iy

By the projection formula [Sta24, Tag 08EU] (and the arguments in the proof of Proposition
5.10 of reducing to scheme-theoretic cohomologies), we have

(5.8) iy,∗Li
∗
yRfh,∗D

r
Ỹ∧ = Rfh,∗D

r
Ỹ∧ ⊗L

OY
iy,∗Oy ≃ Rfh,∗(D

r
Ỹ∧ ⊗L

O
Ỹ∧

Lf∗
hiy,∗Oy).

By Theorem 5.15, the left-hand side equals Tλ
µ∆

r
y assuming Hypothesis 5.9.

Lemma 5.17. Assume Hypothesis 5.9.

(1) If ∆y is de Rham, then f−1
h (y) = G/B = P1 is reduced and

Lf∗
hiy,∗Oy = i′y,∗(OP1(−2)[1]⊕OP1 [0])

where OP1(−2)[1] denotes the line bundle OP1(−2) sitting in cohomological degree −1.
(2) If ∆y is not de Rham, then f−1

h (y) is a finite ramified cover of degree 2 over y and
Lf∗

hiy,∗Oy = f∗
hiy,∗Oy = i′y,∗Of−1

h (y).

Proof. Consider the diagram (of schemes, to be lazy) below:

f−1
h (y) Ỹ∧ Ỹ∧,□ g̃

y Y∧ Y∧,□ g

i′y

fy fh f□
h

α̃

β̃

f

iy
α

β

where all squares are Cartesian. Choose a lift y□ of y in Y∧,□ and let νy be the image of y in g.

If the nilpotent element νy ̸= 0, all vertical maps are finite flat of rank 2 near y, y□ or νy by the
statement on g (Lemma 2.3) and we get (2).

From now on we assume νy = 0 and prove (1). Consider the embedding Ỹ∧,□ j→ H :=

Y∧,□ ×G/B and still write β : Y∧,□ ×G/B → g×G/B. Let I0 be the ideal sheaf for the regular
closed embedding g̃ ↪→ g × G/B, which is locally free of rank one. Since β is flat, I := β∗I0
is the ideal sheaf cutting out Ỹ∧,□ from Y∧,□ × G/B. Let J be the ideal sheaf for the closed
embedding α−1(y) × G/B ↪→ Y∧,□ × G/B. Then I ⊂ J as points on α−1(y) are all de Rham

(α−1(y)×G/B ↪→ Ỹ∧,□).

f□,−1
h (α−1(y)) = α−1(y)×G/B Ỹ∧,□ H := Y∧,□ ×G/B

α−1(y) Y∧,□

f□
h

f□
h

j

k
iα−1(y)

In the notation of the above diagram, using that k is smooth, we get

Lf□,∗
h iα−1(y),∗Oα−1(y) = Lj∗k∗iα−1(y),∗Oα−1(y) = Lj∗OH/J .

While

Lj∗OH/J = OH/I ⊗L
OH
OH/J = [I → OH ]⊗OH

OH/J = [I ⊗OH
OH/J → OH/J ].

Since I ⊂ J , the map I ⊗OH
OH/J → OH/J is zero. We calculate the restriction of the line

bundle I to α−1(y)×G/B whose structure sheaf is OH/J . The ideal I0 on g×G/B corresponds

to the condition that (ν, gB) ∈ g×G/B such that Ad(g−1)(ν) ∈ b. Write Ad(g−1)(ν) =

(
a b
c d

)
,

then change g to gh for h =

(
x y

x−1

)
∈ B sends a local generator c ∈ I0 to x2c. This means that

the restriction of I0 to G/B is OP1(−2) (G×B λ for λ = (1,−1)). Thus Lf□,∗
h iα−1(y),∗Oα−1(y) =

O
f□,−1
h (α−1(y))

⊕O
f□,−1
h (α−1(y))

(−2)[1]. The statement for Lf∗
hiy,∗Oy follows from descent. □

https://stacks.math.columbia.edu/tag/08EU
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Remark 5.18. Write i0 : {0} ↪→ g and P1 = f−1(0). With the proof of the lemma above we
see Li∗0Rf∗Og̃ = R(f |P1)∗(OP1(−2)[1] ⊕ OP1 [0]) = O2

{0}. The calculation matches the fact that

Rf∗Og̃(s) is locally free of rank two for s = 0,±1 in §2.

Write DP1 for the universal (φ,Γ)-module on f−1
h (y) (the restriction of DY1

to f−1
h (y)).

Lemma 5.19. If h = (0, 1), then Rfy,∗(D
r
P1) = t∆r and Rfy,∗(D

r
P1(−2)[1]) = ∆r.

Proof. The proof goes as for Proposition 5.10 and Corollary 5.12. We only do formal calculations
here. Let ∆P1 be the pullback of ∆. The inclusions t∆r

P1 ⊂ Dr
P1 ⊂ ∆r

P1 gives short exact sequences

0→ t∆r
P1 → Dr

P1 → Dr
P1/t∆r

P1 → 0

and

0→ Dr
P1 → ∆r

P1 → Dr
P1/∆r

P1 → 0.

The inclusion Dr
P1/t∆r

P1 ↪→ ∆r
P1/t∆r

P1 = Rr
L/t⊗̂LO2

P1 has image Rr
L/t⊗̂LOP1(−1) and the quo-

tient ∆r
P1/t∆r

P1 ↠ ∆r
P1/Dr

P1 corresponds to the quotient Rr
L/t⊗̂LO2

P1 ↠ Rr
L/t⊗̂LOP1(1). Hence

we have

Rfy,∗(D
r
P1/t∆r

P1) = Rfy,∗(Rr
L/t⊗̂LOP1(−1)) = Rr

L/t⊗̂LRfy,∗OP1(−1) = 0,

Rfy,∗(∆
r
P1/Dr

P1(−2)) = Rfy,∗(Rr
L/t⊗̂LOP1(−1)) = Rr

L/t⊗̂LRfy,∗OP1(−1) = 0.

Moreover,

Rfy,∗t∆
r
P1 = t∆r⊗̂LRfy,∗OP1 = t∆r;

Rfy,∗(∆
r
P1(−2)[1]) = ∆r⊗̂LRfy,∗OP1(−2)[1] = ∆r.

The result follows. □

We recover [Din23, Lem. 2.17] below.

Proposition 5.20. Suppose that h = (0, 1) and assume Hypothesis 5.9.

(1) If ∆ = ∆y is de Rham, then Tλ
µ∆ = i∗yfh,∗DỸ∧ = ∆⊕ t∆.

(2) If ∆ = ∆y is not de Rham, then Tλ
µ∆ = i∗yfh,∗DỸ∧ is a self extension of Dy, where Dy is

the unique (φ,Γ)-module of rank two over RL of weight h such that Tµ
λDy = ∆.

Proof. Since Dr
Ỹ∧ is flat over OỸ∧ , we get Dr

Ỹ∧ ⊗L
O

Ỹ∧
Lf∗

hiy,∗Oy = i′y,∗(D
r
P1(−2)[1] ⊕ Dr

P1) if

∆y is de Rham and is equal to Df−1
h (y) otherwise by Lemma 5.17. By Lemma 5.19, we have

Rfh,∗(D
r
Ỹ∧⊗L

O
Ỹ∧

Lf∗
hiy,∗Oy) = iy,∗Rfy,∗(D

r
P1(−2)[1]⊕Dr

P1) = ∆r⊕t∆r in the de Rham case. Use

(5.8) and take the direct limit over r, we get (1). (2) follows similarly using that Of−1
h (y) ≃ L[h]/h2.

Note that by Proposition 4.20 and the proof of Theorem 5.15, the Casimir c acts by 4h2 − 4h on
Tλ
µ∆ for some choice of h. □

Remark 5.21. In general for h = (0, k) and in the de Rham case, there is a filtration tk∆P1 ⊂
D(k−1,k) ⊂ · · · ⊂ D(1,k) ⊂ D(0,k) = DP1 of (φ,Γ)-modules of rank two where D(i,k) has Hodge-Tate
weight (i, k) by the proof of Proposition 4.17. The graded pieces D(i,k)/D(i+1,k) are isomorphic to

OP1(−1)⊗̂LRL/t as in Lemma 5.19 (see (5.2)) and we can get similarly Tλ
µ∆ = ∆⊕ tk∆.

5.4. Translation of D⊠P1(Qp). Let A be an affinoid algebra over L and DA be a (φ,Γ)-module
over RA of rank 2. Write ω = ωA be the character such that RA(ωAϵ) = det(DA). Pointwisely
for x ∈ Sp(A), Colmez constructed a GL2(Qp)-representation (or a GL2(Qp)-equivariant sheaf
on P1(Qp)) Dx ⊠ω P1(Qp) ([Col16, Col18, Col10]). It is expected that the construction can
vary in family and obtain a GL2(Qp)-module DA ⊠ω P1(Qp). We will not discuss the GL2(Qp)-
module, but only construct a U(g)-module DA ⊠ P1(Qp). Recall P1(Qp) \ Zp = Π.Zp where

Π =

(
1

p

)
=

(
1

1

)(
p

1

)
∈ GL2(Qp).

Definition 5.22. Equip DA with the standard g-module structure in Lemma 4.3. Define DA ⊠
Zp = DA to be the U(g)⊗LA-module DA. Let DA⊠(P1(Qp)\Zp) be the U(g)⊗LA-module Π.DA

which has the underlying A-module DA and g acts on Πx, x ∈ DA by g.Πx = Π(Ad(Π−1)(g).x).
Define DA ⊠P1(Qp) = DA ⊠ Zp ⊕DA ⊠ (P1(Qp) \ Zp).
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Remark 5.23. The character ω is not important for the U(g)-modules due to our definition. But

it matters for GL2(Qp)-representations, namly for how

(
1

1

)
acts on D ⊠ Z×

p .

Hence DA ⊠ P1(Qp) is just two copies of DA with certain g-action. We can similarly define

Dr
A⊠P1(Qp) (= Dr

A⊕
(

1
1

)
φ(Dr

A)). Let us go back to the situation in Construction 5.4. Sheafify

the above definition we obtain sheaves of U(g)-modules DỸ∧ ⊠P1(Qp) and ∆Y∧ ⊠P1(Qp).

Corollary 5.24. Under Hypothesis 5.9, there are isomorphisms of sheaves of U(g)-modules

Tµ
λ (DỸ∧ ⊠P1(Qp)) ≃ Rf∗

h(∆Y∧ ⊠P1(Qp))

and
Tλ
µ (∆Y∧ ⊠P1(Qp)) ≃ Rfh,∗(DỸ∧ ⊠P1(Qp)),

where all notations appeared should be understood as for sheaves of (φ,Γ)-modules with certain
g-actions.

Proof. Over Zp, this is just Corollary 5.16. For the copy on P1(Qp) \ Zp, just notice that for

k ≥ 1, (Π.DA)⊗L SymkL2 ≃ Π.(DA ⊗L SymkL2) as U(g)-modules (since the g-action on SymkL2

integrates to a GL2(Qp)-action) and the adjoint action of Π acts trivially on the center of U(g). □

Appendix A. On families of (φ,ΓK)-modules

A.1. Beauville-Laszlo glueing. We let K be a p-adic local field. Recall

t = log([ϵ]) = XQp

∏
m≥1

Qm(XQp
)/p.

HereQm is the minimal polynomial of ζpm−1 overQp,XQp
= [ϵ]−1, ϵ = (1, ζp, · · · , ζpm , · · · ) ∈ O♭

K̂∞

where K̂∞ denotes the p-adic completion and ζpm is a primitive pm-th root of unity. For m ≥ m(r),
the continuous ΓK-equivariant injection ιm : Rr

Qp,K
↪→ Km[[t]] can be seen as the completion with

respect to the kernel (Qm(XQp
)) of Rr

Qp,K
→ Km = Rr

Qp,K
/Qm(XQp

) (see [Ber08a, §1.2] and
[Ber02, Lem. 4.9]). For an affinoid algebra A over Qp, the ring (A⊗Qp

Km)[[t]] is the completion
of Rr

A,K with respect to the ideal (Qm(XQp
)) and we still write ιm : Rr

A,K → (A⊗Qp
Km)[[t]].

Suppose that DA is a (φ,ΓK)-module over RA,K of rank n, base changed from a (φ,ΓK)-module

Dr
A from Rr

A,K for some r. Define Dm,+
dif (DA) := (A⊗̂Km)[[t]] ⊗ιm,Rr

A,K
Dr

A for m ≥ m(r). Since

by definition ιm+1 = ιm ◦ φ−1, the map Km[[t]] → Km+1[[t]] induced by φ : Rr
K → R

r/p
K is

Km[[t]]-linear and φ∗Dr
A = Rr/p

A,K ⊗φ,Rr
A,K

Dr
A ≃ D

r/p
A induces a ΓK-linear isomorphism (A ⊗Qp

Km+1)[[t]]⊗(A⊗QpKm)[[t]] D
m,+
dif (DA) ≃ Dm+1,+

dif (DA).

Definition A.1. A (φ,ΓK)-module MA (resp. Mr
A) over RA,K [ 1t ] (resp. R

r
A,K [ 1t ]) is a finite

projective RA,K [ 1t ]-module (resp. finite projective Rr
A,K [ 1t ]-module) equipped with commuting

continuous semi-linear actions of φ,ΓK (resp. ΓK-isomorphism φ∗Mr
A ≃ M

r/p
A ) such that there

exists a (φ,ΓK)-module Dr
A over Rr

A and an isomorphism MA ≃ RA,K [ 1t ]⊗Rr
A,K

Dr
A (resp. Mr

A ≃
Rr

A,K [ 1t ]⊗Rr
A,K

Dr
A).

Lemma A.2. The ring Rr
A,K is t torsion-free.

Proof. The short exact sequence 0→ R[s,r]
K

×t→ R[s,r]
K → R[s,r]

K /t→ 0 splits as Qp-Banach spaces as

in the proof of [Liu15, Prop. 2.15]. Taking the completed tensor with A we see R[s,r]
A,K is t-torsion

free for all r, s. The limit Rr
A,K = lim←−s

R[s,r]
A,K is still t-torsion free. □

The functor Dm
dif(−) extends naturally for (φ,ΓK)-modules over Rr

A,K [ 1t ] and m > m(r) by in-

verting t. And the φ-action induces Dm+1
dif (MA) ≃ (A⊗Qp

Km+1)[[t]][
1
t ]⊗(A⊗QpKm)[[t]][ 1t ]

Dm
dif(MA).

Proposition A.3. Suppose that r is chosen such that t is invertible in R[r,r]
A,K and m = m(r). The

functor

Dr
A 7→ (Mr

A := Dr
A[

1

t
], Dm,+

dif (Dr
A), D

m
dif(M

r
A) = Dm,+

dif (Dr
A)[

1

t
])
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induces an equivalence of categories

ΦΓr,+
A,K ≃ ΦΓr

A,K ×Repm
dif,A(ΓK) Rep

m,+
dif,A(ΓK)

between the category of (φ,ΓK)-modules over Rr
A,K and the category of triples (Mr

A, D
m,+
dif,A, αm)

where Mr
A is a (φ,ΓK)-module over Rr

A,K [ 1t ], D
m,+
dif,A is a continuous semilinear ΓK-representation

over a projective (A ⊗Qp
Km)[[t]]-module of rank n and αm : Dm,+

dif,A[
1
t ] ≃ Dm

dif(M
r
A). The inverse

functor is given by (write Dm′,+
dif,A := (Km′ ⊗Qp

A)[[t]]⊗(Km⊗QpA)[[t]] D
m,+
dif,A for m′ ≥ m)

(Mr
A, D

m,+
dif,A, αm) 7→ {x ∈Mr

A | ιm′(x) ∈ Dm′,+
dif,A ⊂ Dm′,+

dif,A [
1

t
]
αm≃ Dm′

dif (M
r
A),∀m′ ≥ m}.

Moreover, the equivalence commutes with arbitrary base change.

Proof. This follows from the Beauville-Laszlo lemma [BL95] and the consideration of φ-actions.
A finite projective φ-module Dr

A,K over Rr
A is equivalently the global section of a φ-bundle Dr

A

over the relative annulus Ur ×Qp
Sp(K ′

0 ⊗Qp
A) (see [KPX14, Prop. 2.2.7]). In terms of vector

bundles, a φ-module Mr
A over Rr

A,K [ 1t ] corresponds to a φ-bundle over Ur ×Qp Sp(K ′
0 ⊗Qp A) up

to modifications along the divisors cut out by Qm′(XQp) for m
′ ≥ m = m(r). Using the φ-action,

modifications of Dr
A are determined by the modification at Qm(XQp

) which is recorded as the

ΓK-lattice Dm,+
dif (Dr

A) inside Dm
dif(D

r
A). See [Fru23, Thm. 5.11] for more details. □

A.2. Almost de Rham families. We prove [EGH23, Prop. 5.3.27]. We need to write the proof
here because some constructions in the proof are used for the main theorem.

Let K/Qp be a local field, A be an affinoid algebra over L. We fix an embedding τ : K ↪→
L ⊂ A. A ΓK-representation Dm,+

dif,A of rank n with coefficients in A ⊗K Km is a finite projective

(A⊗K Km)[[t]]-module of rank n with a continuous semilinear action of ΓK , where ΓK acts on Km

by the Galois action and on t via the cyclotomic character. Write Dm,+
Sen,A = Dm,+

dif,A/t. As in [Fon04,

Prop. 3.7], differentiate the ΓK-action, we can obtain a connection ∇ on Dm,+
dif,A = lim←−k

Dm,+
dif,A/t

k

which is the Sen operator after modulo t. We say that Dm,+
dif,A is almost de Rham of weights h =

(h1, · · · , hn) ∈ Zn, h1 ≤ · · · ≤ hn if all the Sen polynomial of the specialization Dm,+
Sen,x is equal to∏n

i=1(T −hi) for any x ∈ Sp(A). Write Dm
dif,A = Dm,+

dif,A[
1
t ]. Denote by Sm,A = (A⊗KKm)[[t]]. Let

RepSm,A
(ΓK)h be the groupoid of almost de Rham semilinear ΓK-representations over projective

Sm,A-modules of weight h. For m′ ≥ m, the tensor product − ⊗Km
Km′ induces a functor

RepSm,A
(ΓK)h → RepSm′,A

(ΓK)h.

Definition A.4. Write S∞,A = (A⊗K K∞)[[t]].

(1) Define the groupoid RepS∞,A
(ΓK)h := lim−→m

RepSm,A
(ΓK)h. Objects of RepS∞,A

(ΓK)h

consist of representations Dm,+
dif,A ∈ RepSm,A

(ΓK)h for some m identified with Dm,+
dif,A ⊗Km

K ′
m ∈ RepSm′,A

(ΓK)h for all m′ ≥ m. And for D
′,m′,+
dif,A ∈ RepSm′,A

(ΓK)h,

HomRepS∞,A
(ΓK)h(D

m,+
dif,A, D

′,m′,+
dif,A ) = lim−→

m′′≥m,m′

HomRepS
m′′,A

(ΓK)h(D
m′′,+
dif,A , D

′,m′′,+
dif,A )

where Dm′′,+
dif,A := Dm,+

dif,A ⊗Km Km′′ , D
′,m′′,+
dif,A := D

′,m′,+
dif,A ⊗Km′ Km′′ .

(2) For Dm,+
dif,A ∈ RepSm,A

(ΓK)h, we say that m is large enough if the action of ΓKm
on

Dm,+
dif,A/t is analytic, namely for any γ ∈ ΓKm , the action of γ is given by the convergent

series exp (log(ϵ(γ))∇) =
∑∞

i=0
(log(ϵ(γ))∇)i

i! .

For any Dm,+
dif,A ∈ RepSm,A

(ΓK)h, there exists always m′ > m such that m′′ is large enough for

Dm′′,+
dif,A for any m′′ ≥ m′ (such that the series log(γKm′ ) in EndA×KKm′ (D

m′,+
dif,A/t) converges and

γKm′ = exp(log(γKm′ )), cf. [KPX14, Prop. 2.2.14]).
We take G = GLn/L and Ph a standard parabolic subgroup of G such that the Weyl group of

the Levi of Ph is the stabilizer of h in Sn as in §3. Let (g̃h/G)∧0 (A) be the groupoid of triples
(DpdR,A, νA,Fil

•DpdR,A) where DpdR,A is a finite projective A-module of rank n, Fil•DpdR,A

is a decreasing filtration of projective sub-A-modules of type h as in Definition 3.4 and νA ∈
EndA(DpdR,A) is a nilpotent endomorphism which keeps the filtration.

We define the functor DpdR : RepS∞,A
(ΓK)h → (g̃h/G)∧0 (A).



36 ZHIXIANG WU

Definition A.5. Let log(t) be the formal variable such that γ. log(t) = log(ϵ(γ))+log(t) for γ ∈ ΓK

and let the operator νA act on Sm,A[log(t)] as a Sm,A-linear derivative such that νA(log(t)) = −1.
(1) For Dm,+

dif,A ∈ RepSm,A
(ΓK)h such that m is large enough, define the A-module with a

filtration

DpdR(D
m,+
dif,A) = DpdR(D

m
dif,A) := (Dm

dif,A ⊗Sm,A
Sm,A[log(t)])

ΓK ,

FiliDpdR(D
m,+
dif,A) := (tiDm,+

dif,A ⊗Sm,A
Sm,A[log(t)])

ΓK

for i ∈ Z, equipped with anA-linear operator νA induced by the derivative νA onSm,A[log(t)].
(2) Given (DpdR,A, νA,Fil

•DpdR,A) ∈ (g̃h/G)∧0 (A), we let

Dm
dif(DpdR,A, νA) := (DpdR,A ⊗A Sm,A[

1

t
][log(t)])νA=0

and

Dm,+
dif (DpdR,A, νA,Fil

•DpdR,A) := (
∑
i∈Z

FiliDpdR,A ⊗A t−iSm,A[log(t)])
νA=0

be Sm,A-modules equipped with actions of ΓK .

Proposition A.6. The functors DpdR(−), Dm,+
dif (−) are well defined and the following statements

hold.

(1) If m is large enough for Dm,+
dif,A ∈ RepSm,A

(ΓK)h in the sense of Definition A.4, then the
natural map

ρpdR,m :
∑
i∈Z

FiliDpdR(D
m,+
dif,A)⊗A t−iSm,A[log(t)]→ Dm,+

dif,A ⊗Sm,A
Sm,A[log(t)].

is an isomorphism and induces an isomorphism in RepSm,A
(ΓK)h:

Dm,+
dif (DpdR(D

m,+
dif,A), νA,Fil

•DpdR(D
m,+
dif,A)) ≃ Dm,+

dif,A.

(2) The functors DpdR(−) and Dm,+
dif (−) induce an equivalence of groupoids RepS∞,A

(ΓK)h ≃
(g̃h/G)∧0 (A). Moreover, the equivalence commutes with arbitrary base change.

Proof. Step 1. We show that the functor Dm,+
dif (−) is well-defined. Suppose that

(DpdR,A, νA,Fil
•DpdR,A) ∈ (g̃h/G)∧0 (A).

Note that Dm
dif(DpdR,A, νA) = (DpdR,A ⊗A Sm,A[log(t)])

νA=0[ 1t ]. We show that (DpdR,A ⊗A

Sm,A[log(t)])
νA=0 is an almost de Rham ΓK-representation of weight 0. First,

νA(
∑
i≥0

xi log(t)
i) =

∑
i≥0

(νA(xi) log(t)
i − xi+1(i+ 1) log(t)i) = 0

for xi ∈ DpdR,A ⊗A Sm,A if and only if xi+1 = 1
i+1νA(xi) for i ≥ 0. Since νA is nilpotent on

DpdR ⊗A Sm,A, we have an identification

DpdR,A ⊗A Sm,A ≃ (DpdR,A ⊗A Sm,A[log(t)])
νA=0

x 7→
∑
i≥0

1

i!
νiA(x) log(t)

i.

as Sm,A-modules (but not ΓK-equivariantly). Under this identification, the connection ∇ on
(DpdR,A ⊗A Sm,A[log(t)])

νA=0 corresponds to ∇ + νA on DpdR,A ⊗A Sm,A: ∇(
∑

i xi log(t)
i) =∑

i(∇(xi) + (i + 1)xi+1) log(t)
i =

∑
i(∇(xi) + νA(xi)) log(t)

i where νA is linear for Sm,A and ∇
kills DpdR,A. Since νA is nilpotent, the Sen weights are pointwisely all zero.

Same argument shows that

Dm,+
dif (DpdR,A, νA,Fil

•DpdR,A) ≃
∑
i

FiliDpdR,A ⊗A t−iSm,A

as an Sm,A-module. Since Fil•DpdR,A has projective graded pieces, we may choose a splitting

DpdR,A = D1 ⊕D2 · · · ⊕Ds where 0 ̸= Di = FilkiDpdR,A/Fil
ki+1DpdR,A and k1 > · · · > ks such

that {−k1, · · · ,−ks} = {h1, · · · , hn} as sets. Then

Dm,+
dif (DpdR,A, νA,Fil

•DpdR,A) = D1 ⊗A t−k1Sm,A ⊕ · · · ⊕Ds ⊗A t−ksSm,A
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is projective of rank n over Sm,A of weights h. If m′ ≥ m, by the above description, we see

Dm′,+
dif (DpdR,A, νA,Fil

•DpdR,A) = Dm,+
dif (DpdR,A, νA,Fil

•DpdR,A)⊗Km
Km′ .

Hence the image in RepS∞,A
(ΓK)h is independent of m.

Step 2. Take Dm,+
dif,A ∈ RepSm,A

(ΓK)h ⊂ RepS∞,A
(ΓK)h such that m is large enough. We show

that (DpdR(D
m,+
dif,A), νA,Fil

•DpdR(D
m,+
dif,A)) ∈ (g̃h/G)∧0 (A) and is independent of m.

Recall Dm
Sen,A = Dm,+

dif,A/t. Consider the ΓK-representation tiDm
Sen,A. There is a canonical ΓK-

decomposition Dm
Sen,A = ⊕s

i=1D
m
Sen,A{∇Sen = −ki} according to the generalized eigenvalues of

∇Sen where each Dm
Sen,A{∇Sen = −ki} is projective over A⊗K Km of rank mi.

By Lemma A.7, each (tiDm
Sen,A ⊗Km

Km[log(t)])ΓK is finite projective over A of rank the mul-
tiplicity of −i in h and the map

(A.1) ⊕i∈Zt
−i(tiDm

Sen,A ⊗Km
Km[log(t)])ΓK ⊗K Km[log(t)]→ Dm

Sen,A ⊗Km
Km[log(t)]

is an isomorphism of ΓK-representations over (A⊗K Km)[log(t)]. Set

griDpdR(D
m,+
dif,A) := (tiDm,+

dif,A ⊗Sm,A
Sm,A[log(t)])

ΓK/(ti+1Dm,+
dif,A ⊗Sm,A

Sm,A[log(t)])
ΓK .

There is an injection for all i

griDpdR(D
m,+
dif,A) ↪→ (tiDm

Sen,A ⊗Km
Km[log(t)])ΓK

which we claim is an isomorphism.
Suppose that v ∈ tiDm,+

dif,A with image v ∈ tiDm
Sen,A such that

∞∑
i=0

(−1)i

i!
∇i(v) log(t)i ∈ (tiDm

Sen,A ⊗Km
Km[log(t)])∇=0.

Take a ≤ b ∈ Z such that i, h1, · · · , hn ∈ [a, b]. In the beginning of the proof of [Wu21, Prop.

A.10], there exists l ≥ 1 and maps βk : t−bDm,+
dif,A → t−bDm,+

dif,A, k ≥ 1 such that βk(v)− βk+1(v) ∈
tk+1−aDm,+

dif,A and (γKm − 1)lβk(x) ∈ tk+1−bDm,+
dif,A. Moreover, l is large enough such that (γKm −

1)l(tiDm,+
dif,A/t

i+1Dm,+
dif,A)

(γKm−1)−nil = 0. By the construction, βk maps tiDm,+
dif,A to tiDm,+

dif,A and

induces an automorphism of (tiDm,+
dif,A/t

i+1Dm,+
dif,A)

(γKm−1)−nil independent of k. Take any v′ such

that βk(v
′) has image v in tiDm

Sen,A. Then ṽ := lim−→k
βk(v

′) is a lift of v in (tiDm,+
dif,A)

(γKm−1)−nil. We

get that ∇ acts nilpotently on ṽ and
∑∞

i=0
(−1)i

i! ∇
i(ṽ) log(t)i ∈ (tiDm,+

dif,A ⊗Km
Km[log(t)])ΓKm (cf.

the proof of [Wu21, Lem. A.2]). We conclude that the map (tiDm,+
dif,A ⊗Sm,A

Sm,A[log(t)])
ΓKm →

(tiDm
Sen,A ⊗Km

Km[log(t)])ΓKm is surjective. Take ΓK-invariants we see

griDpdR(D
m,+
dif,A) ≃ (tiDm

Sen,A ⊗Km Km[log(t)])ΓK .

ThusDpdR(D
m,+
dif,A) equipped with the filtration FiliDpdR(D

m,+
dif,A) = (tiDm,+

dif,A⊗Sm,A
Sm,A[log(t)])

ΓK

has type h (we use that extensions of projective modules are still projective). And if m′ ≥ m,

griDpdR(D
m,+
dif,A) = griDpdR(D

m′,+
dif,A) for all i by Lemma A.7. Hence the functor DpdR(−) is inde-

pendent of large enough m.
Step 3. We show that the functors induce an equivalence of categories. We first show that the

map ρpdR,m in (1) is an isomorphism. By Step 1, both sides are finite projective over Sm,A[log(t)].

We may choose a splitting of the filtration Fil•DpdR(D
m,+
dif,A) with graded pieces identified with

(tiDm
Sen,A ⊗Km Km[log(t)])ΓK . Modulo t, ρpdR,m coincides with the isomorphism (A.1), which is

an injection. We get that ρpdR,m is an injection itself (since the source is t-adically separated). To

see the surjectivity, we only need to show that ν = 0 part of the lefthand side Dm,+
dif,A is contained

in the image. The ν = 0 part of the righthand side, which is a projective Sm,A-module, admits an

explicit description in terms of gr•DpdR(D
m,+
dif,A) by Step 1. Modulo t, the map between ν = 0 part

is given by the ν = 0 part of (A.1), the surjectivity follows. This also shows that the map DpdR(−)
is essentially surjective. By the definition of the groupoid RepS∞,A

(ΓK)h, Hom(Dm,+
dif,A, D

m′,+
dif,A) =

lim−→m′′ Hom(Dm,+
dif,A⊗Km

Km′′ , Dm′,+
dif,A ⊗Km′ Km′′). To show fully faithfulness, we only need to show

that for m large enough, the map EndRepSm,A
(ΓK)h(D

m,+
dif,A)→ End(g̃h/G)∧0 (A)(DpdR(D

m,+
dif,A)) is an

isomorphism. The map is an injection by taking ν = 0 part of the canonical isomorphism ρpdR,m.
The surjectivity follows similarly using ρpdR,m.
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Step 4. Assume that Sp(B) → Sp(A) is a morphism of affinoids. We need to show that for

m large enough, the natural map FiliDpdR(D
m,+
dif,A) ⊗A B → FiliDpdR(D

m,+
dif,A ⊗Sm,A

Sm,B) is an
isomorphism. Both sides are finite projective B-modules of the same rank, we can reduce to show
that griDpdR(D

m,+
dif,A) ⊗A B → griDpdR(D

m,+
dif,A ⊗Sm,A

Sm,B) is an isomorphism for all i. This

follows from the proof of Lemma A.7 (see also [Bel15, §3]). □

Lemma A.7. Let Dm
Sen,0 be a semilinear ΓK-representation over a finite projective A ⊗K Km-

module of rank n and with Sen weights pointwisely 0 such that m is large enough as in Definition
A.4. Then for i ̸= 0, we have (tiDm

Sen,0 ⊗Km K∞[log(t)])ΓK = 0, and the map

(Dm
Sen,0 ⊗Km

Km[log(t)])ΓK ⊗K Km[log(t)]→ Dm
Sen,0 ⊗Km

Km[log(t)]

is an isomorphism of ΓK-representations. Moreover, for m′ ≥ m, (Dm
Sen,0 ⊗Km Km[log(t)])ΓK =

(Dm
Sen,0 ⊗Km Km′ [log(t)])ΓK .

Proof. Weights zero means that the Sen operator∇ acts nilpotently onDm
Sen,0 by Lemma 3.9. Since

m is large enough, we have Dm
Sen,0 ≃ (Dm

Sen,0 ⊗Km
Km[log(t)])ΓKm = (Dm

Sen,0 ⊗Km
Km[log(t)])∇=0,

cf. [Wu21, Lem. A.2]. Actually, we have Dm
Sen,0 = Dm

Sen,0{γKm = 1} and an identification of
A⊗K Km-modules

F : Dm
Sen,0 ≃ (Dm

Sen,0 ⊗Km Km[log(t)])ΓKm : x 7→
∞∑
i=0

(−1)i

i!
∇i(x) log(t)i.

We show that the natural ΓK-map

ρSen,m : (Dm
Sen,0 ⊗Km Km[log(t)])ΓKm ⊗Km Km[log(t)]→ Dm

Sen,0 ⊗Km Km[log(t)]

is an isomorphism. Since F : ∇(x) 7→
∑∞

i=0
(−1)i

i! ∇
i+1(x) log(t)i and ∇ is nilpotent, one can verify

that the map ρSen,m is a surjection by a decreasing induction: for any x ∈ Dm
Sen,0 and i, we have

∇j(x)⊗ 1 is in the image of ρSen,m for all j ≥ i. To show the injectivity, consider the A⊗K Km-
linear derivation of ν on the two sides: ν(log(t)) = −1. Under the identification F , ν corresponds
to ∇ on Dm

Sen,0. The map ρSen,m induces an isomorphism on ν = 0 part: ν(
∑

i F (xi) log(t)
i) = 0

if and only if (i+ 1)xi+1 = ∇(xi) and in this case we have

ρSen,m(
∑
i

F (xi) log(t)
i) =

∑
i+j=k

(−1)i

i!j!
∇k(x0) log(t)

k ̸= 0

if x0 ̸= 0. Now suppose that ρSen,m(x) = 0 for some x =
∑

i F (xi) log(t)
i ̸= 0. Let i be the

minimal integer such that νi(x) = 0. Then i ≥ 1 and ρSen,m(νi−1(x)) = 0 which forces νi−1(x) = 0,
contradiction! Hence ρSen,m is an isomorphism.

Finally, by Galois descent, we have (Dm
Sen,0⊗Km

Km[log(t)])ΓKm = (Dm
Sen,0⊗Km

Km[log(t)])ΓK⊗K

Km as subspaces of Dm
Sen,0 ⊗Km

Km[log(t)]. And for m′ ≥ m, we have an isomorphism

(Dm
Sen,0 ⊗Km Km[log(t)])ΓK ⊗K Km′ [log(t)]→ Dm

Sen,0 ⊗Km Km′ [log(t)].

Taking ΓKm′ -invariants, we see (Dm
Sen,0 ⊗Km

Km′ [log(t)])ΓK
m′ = (Dm

Sen,0 ⊗Km
Km′ [log(t)])∇=0 =

(Dm
Sen,0 ⊗Km Km[log(t)])ΓK ⊗K Km′ . Taking ΓK-invariants we get (Dm

Sen,0 ⊗Km Km′ [log(t)])ΓK =

(Dm
Sen,0 ⊗Km Km[log(t)])ΓK . □

Appendix B. GAGA and formal functions

We consider formal completions of rigid spaces and coherent modules on these spaces.

Definition B.1. Let X be a rigid space over L and let I be a coherent sheaf of ideals of OX. Let Xn

be the analytic closed subspace of X defined by In. The formal completion of X along X1, denoted
by X∧, is the ringed site (X1,OX∧) which has the same underlying Grothendieck topological space
as X1 and the structure sheaf OX∧ := lim←−n

OXn .

The space above should be considered as a formal rigid analytic space, except that we will ignore
the topology on the sheaf of the topological rings OX∧ .

We consider affinoid cases first. In the following, let A be an affinoid algebra over a p-adic
field L and let I ⊂ A be an ideal. Let Y∧ = lim−→n

Yn = lim−→n
Sp(A/In) be the formal completion

of Y = Sp(A) along Sp(A/I). For an affinoid open subspace Sp(B) ⊂ Sp(A), OYn
(Sp(B/I)) =

B⊗̂AA/I
n = B/In and OY∧(B/I) = B∧ := lim←−n

B/In.



GEOMETRIC TRANSLATIONS OF (φ,Γ)-MODULES FOR GL2(Qp) 39

Lemma B.2. An admissible open subset of Sp(A/I) admits a covering by open affinoids of the
form Sp(B/I) for affinoid opens Sp(B) ⊂ Sp(A).

Proof. A rational subdomain of Sp(A/I) has the form Sp((A/I)⟨x1, · · · , xn⟩/(x1g− f1, · · · , xng−
fn)) for some fi, g ∈ A/I such that fi, g generate the unit ideal of A/I. Take lifts f̃i, g̃ in A and

add possibly some f̃n+1, · · · , f̃n+k ∈ I, we see it has the form Sp(B/I) for a rational subdomain

Sp(B) ⊂ Sp(A) where B = A⟨x1, · · · , xn+k⟩/(x1g̃ − f̃1, · · · , xn+kg̃ − f̃n+k). Then the statement
follows from that rational subdomains form a basis for the Grothendieck topology [Bos14, Cor.
4.2/12]. □

Definition B.3. An OY∧-module F on the I-adic formal affinoid space Y∧ is coherent if F has
the form F = lim←−Fn where Fn are coherent OYn

-modules such that Fn/I
n−1 = Fn−1.

Suppose that F is a finitely generated A∧-module (a coherent OSpec(A∧)-module), we can as-
sociate a coherent OY∧-module F = lim←−Fn where Fn is the coherent OYn

-module attached to

F/In. The following lemma is an analogue of [Gro60, Prop. 10.10.5, Ch.I].

Lemma B.4. Let Y∧ be as above.

(1) Let F = lim←−n
Fn be a coherent OY∧-module. Then we have F(Y∧) = lim←−n

Fn(Yn) and

RiΓ(Y∧,F) = 0 for i > 0. Moreover, Fn is uniquely determined by F := F(Y∧) which is
a finitely generated A∧-module and Fn(Y

∧) = F/In. And for any affinoid open Sp(B) ⊂
Sp(A) which defines an affinoid open Sp(B/I) ⊂ Sp(A/I), we have F(Sp(B/I)) = F ⊗A∧

B∧.
(2) The functor F 7→ F from the category of finitely generated O(Y∧)-modules to the category

of coherent OY∧-modules induces an equivalence of abelian categories.
(3) An OY∧-module F is coherent if and only if it is coherent in the sense of [Sta24, Tag

03DK].

Proof. (1) Since the maps Fn → Fn−1 are surjective, we have F = R lim←−n
Fn. Since Y

∧ is affinoid,

the maps Fn(Y
∧) → Fn−1(Y

∧) are surjective. Hence RΓ(Y∧,F) = lim←−n
Fn(Yn) by [Sta24, Tag

0D60]. By [Sta24, Tag 09B8], we have F(Y∧)/In = Fn(Y
∧) and F(Y∧) is finitely generated by

Nakayama lemma, see [Sta24, Tag 087W]. Finally, since Fn is coherent over Yn and Sp(B/In) is an
affinoid open in Sp(A/In), Fn(Sp(B/In)) = Fn(A/In) ⊗A/In B/In = F/In ⊗A/In B/In. Taking
inverse limit F(Sp(B/In)) = lim←−n

F ⊗A∧ B/In = F ⊗A∧ B∧ using that F is finitely generated over

A∧.
(2) The essential surjectivity is by (1). We need verify fully faithfulness. Let F,G be two finitely

generated A∧-modules and let F ,G be the corresponding coherent sheaves. Then HomA∧(F,G) =
lim←−n

HomA/In(F/In, G/In) = lim←−n
HomOY∧ (Fn,Gn) by [Sta24, Tag 0EHN]. Apply this argument

for the formal affinoid subspace Sp(B/I) of Y∧, we get

HomOY∧ (F ,G)(Sp(B/I)) = HomB∧(F(B∧),G(B∧)) = lim←−
n

HomOY∧ (Fn,Gn)(Sp(B/I)).

Hence HomOY∧ (F ,G) = lim←−n
HomOY∧ (Fn,Gn). Taking global sections we see HomOY∧ (F ,G) =

HomA∧(F,G). This proves the equivalence. See [Sta24, Tag 087X] for the structure of abelian
categories.

(3) The proof is the same as for [Gro60, Prop. 10.10.5, Ch.I], using that affinoid algebras as
well as their completions are Noetherian. □

Let B be an affinoid algebra over L. Write S = Spec(B) and S = Sp(B). Suppose that
f : XS → Spec(B) is a projective scheme over S and let XS be its relative analytification over S
which is equipped with a map of locally ringed spaces ι : XS → XS (see [Con06, Exa. 2.2.11, Exa.
2.3.11]). The following result was firstly proved in [Köp74]. See also [Con06, Exa. 3.2.6] or [Poi10,
Ann. A].

Theorem B.5 (Relative GAGA theorem). In the above situation, the functor F 7→ ι∗F induces
an equivalence of categories of coherent OXS

-modules and coherent OXS
-modules. And for any

coherent OXS
-module F on XS, the natural morphism Hi(XS ,F) → Hi(XS, ι∗F) of finite B-

modules is an isomorphism for all i ≥ 0.

We go to the formal setting. Suppose that fY : X → Y is a projective scheme over Y = Spec(A).
Let XYn

= X ×Y Yn where Yn = Spec(A/In). We form relative analytification XYn
for XYn

over

https://stacks.math.columbia.edu/tag/03DK
https://stacks.math.columbia.edu/tag/03DK
https://stacks.math.columbia.edu/tag/0D60
https://stacks.math.columbia.edu/tag/0D60
https://stacks.math.columbia.edu/tag/09B8
https://stacks.math.columbia.edu/tag/087W
https://stacks.math.columbia.edu/tag/0EHN
https://stacks.math.columbia.edu/tag/087X
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Spec(A/In) with proper maps XYn
→ Yn as well as XY → Y. Then XY∧ = lim−→n

XYn
is the

formal completion of XY along the closed subspace XY1
. We can define the category of coherent

OXY∧ -modules as in Definition B.3, which is equivalent to the usual definition on a ringed site by

Lemma B.4 (cf. [Gro60, Thm. 10.11.3, Ch.I]).
We also have a formal scheme XSpf(A∧) = lim−→n

XYn
and a scheme XSpec(A∧) the base change of

XY = X to Spec(A∧). There are natural morphisms of ringed sites XY∧ → XSpf(A∧) → XSpec(A∧).
Write fYn

: XYn
→ Yn. The following corollary generalizes Lemma B.4.

Corollary B.6. Let XY∧ , XSpf(A∧), XSpec(A∧) be as above.

(1) The category of coherent OXY∧ -modules is equivalent to the category of coherent modules

on the formal scheme XSpf(A∧) (in the sense of [Sta24, Tag 089N]). Both categories are
equivalent to the category of coherent OXSpec(A∧)

-modules on the scheme XSpec(A∧).

(2) Let F = lim←−n
Fn be a coherent module on XY∧ and FA∧ be the corresponding coherent

module on XSpec(A∧) by (1). Then for all i ≥ 0, RifY∧,∗F = lim←−n
RifYn,∗Fn and is the

coherent OY∧-module attached to the finite A∧-module Hi(XSpec(A∧),FA∧).

Proof. (1) The first equivalence is an application of Theorem B.5 above for each XYn
and by the

definition of the category of coherent modules. The equivalence of coherent modules on XSpf(A∧)

and XSpec(A∧) is Grothendieck’s existence theorem [Sta24, Tag 08BE].

(2) SinceRfY∧,∗F = RfY∧,∗R lim←−n
Fn = R lim←−n

RfY∧,∗Fn, we haveR
ifY∧,∗F = lim←−n

RifYn,∗Fn

by [Sta24, Tag 0D60] for i ≥ 0 provided that R1 lim←−n
RifYn,∗Fn = 0 for all i. We need to show that

the inverse system RifYn,∗Fn is Mittag-Leffler (cf. [Emm96]). Write (FA/In)n for the coherent
modules over XSpf(A∧) by the equivalence in (1). Then (FA/In)n = (FA∧/In)n. Under the equiv-

alence in Theorem B.5, RifYn,∗Fn = RifYn,∗FA/In as coherent sheaves associated to the same

A/In-module Hi(XYn
,FA/In) = Hi(XSpec(A∧),FA∧/In). Apply [Sta24, Tag 02OB] for the proper

morphism XSpec(A∧) → Spec(A∧) and the sheaf FA∧ , we see the system (RifYn,∗Fn)n is Mittag-

Leffler. By [Sta24, Tag 087U], Hi(XSpec(A∧),FA∧) = lim←−n
Hi(XYn

,Fn) as finite A∧-modules.

Hence RifY∧,∗F(Y∧) = lim←−n
RifYn,∗Fn(Yn) = Hi(XSpec(A∧),FA∧) as A∧-modules. For an

affinoid subdomain Sp(B) ⊂ Sp(A), a similar statement holds replacing A∧ by B∧. The ring map
A→ B is flat [Bos14, Cor. 4.1/5]. Hence the maps A/In → B/In and A∧ → B∧ are flat by Lemma
B.7 below. By the flat base change, we have Hi(XSpec(B∧),FB∧) = Hi(XSpec(A∧),FA∧) ⊗A∧ B∧.

Thus RifY∧,∗F = lim←−n
RifYn,∗Fn, as an OY∧-module, is the coherent OY∧-module attached to

the finite A∧-module Hi(XSpec(A∧),FA∧) (see Lemma B.4). □

We used frequently the following lemma.

Lemma B.7. Let A be a ring and let I be an ideal of A. Suppose that (Mn)n is an inverse system
of A-modules such that Mn is a flat A/In-module for any n. Let M := lim←−n

Mn.

(1) Suppose that A is Noetherian and that the transition maps Mn+1 →Mn are surjective for
all n, then M is flat over A and Q⊗A M = lim←−n

Q⊗A Mn for any finite A-module Q.

(2) Suppose that Mn+1 ⊗A/In+1 A/In = Mn and Mn is finite flat over A/In for all n. If
M1 is finite projective over A/I, then M is finite projective over A∧ = lim←−A/In and

M ⊗A∧ A/In = Mn for all n.

Proof. (1) is [Sta24, Tag 0912]. (2) follows from [Sta24, Tag 0D4B]. □
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[BK07] Michel Brion and Shrawan Kumar. Frobenius splitting methods in geometry and representation theory,

volume 231. Springer Science & Business Media, 2007.

[BK15] Erik Backelin and Kobi Kremnitzer. Singular localization of g-modules and applications to representation
theory. Journal of the European Mathematical Society, 17(11):2763–2787, 2015.

[BL95] Arnaud Beauville and Yves Laszlo. Un lemme de descente. Comptes Rendus de l’Academie des Sciences-

Serie I-Mathematique, 320(3):335–340, 1995.
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