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ABSTRACT. We prove that any smooth irreducible supersingular representation with central character
of GL2(F ) is never of finite presentation when F is a finite field extension of Qp such that F 6= Qp,
extending a result of Schraen in [16] for quadratic extensions.

1. INTRODUCTION

Let p be a prime number. Let F be a finite extension of Qp with ring of integers O. Let n ≥ 2 be an
integer. Recent years, several progresses have been made on the study of representations of p-adic Lie
groups on vector spaces over fields of characteristic p, motivated by the p-adic and mod-p Langlands
programs. The classifications of mod-p irreducible admissible smooth representations of GLn(F ) in
terms of supersingular representations was proved by Barthel-Livné for GL2 ([3]) and by Herzig for
general GLn ([10]), which are now known for general reductive groups ([2]). Supersingular representa-
tions of GL2(Qp) was classified by Breuil and some mod-p Langlands correspondences appeared ([4]).
Up to now, except GL2(Qp) and some related groups such as SL2(Qp) ([1],[6],[12]), supersingular
representations for general groups (e.g. GL3(Qp) or GL2(F ) when F 6= Qp) remain mysterious. Some
complexity of classifications of supersingular representations of GL2(F ) when F 6= Qp was shown by
Breuil-Paškūnas’s construction of supersingular representations ([5]). Daniel Le also constructed some
non-admissible irreducible smooth mod-p representations for certain GL2(F ) ([13]).

Let G = GL2(F ),K = GL2(O) and Z be the center of G. Let π be an irreducible smooth rep-
resentation of G over an algebraically closed characteristic p field k with central character. Then π
contains a smooth irreducible sub-representation σ of subgroup KZ and there is a surjective morphism
ofG-representations indGKZσ � π by the Frobenius reciprocity where indGKZσ denotes the compact in-
duced representation. The representation π is called of finite presentation if the kernel of the surjection
indGKZσ � π is finitely generated as a k[G]-module. Such kind of finite presentation of representations
of G when G = GL2(Qp) are used by Colmez to construct a functor to get étale (ϕ,Γ)-modules from
representations of GL2(Qp), which plays a key role in mod-p and p-adic Langlands correspondences
for GL2(Qp) ([7]). Vignéras constructed a generalized functor from representations of GL2(F ) of finite
presentation to étale (ϕ,Γ)-modules of finite type ([17]). Unfortunately, Schraen proved in [16] that
any smooth irreducible supersingular representation with central character of GL2(F ) is never of finite
presentation when F is a quadratic field extension of Qp. The proof relies on a kind of coherent rings
found by Emerton ([8]) and a criterion of finite presentation for representations of GL2 by Hu (Theorem
1.3, [11]). In the note, we extend the result for any finite field extension F of Qp such that F 6= Qp.

Theorem 1.1 (3.8). If [F : Qp] ≥ 2, a smooth supersingular representation of GL2(F ) with central
character is not of finite presentation.

The proof firstly follows and simplifies the original arguments in [16]. Let indGKZσ/T (indGKZσ)
be the universal supersingular representation of G where T is the distinguished Hecke operator (cf.
[3]). Let L(σ) be the subspace of indGKZσ/T (indGKZσ) generated by σ under the action of monoid(
$2N O

1

)
, where $ is a uniformizer of O. Let U :=

(
1 O

1

)
be the subgroup of unipotent upper-

triangular matrices in GL2(O). Using some arguments on modules over coherent rings (Lemma 3.1
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and Lemma 3.2), we prove that π is not of finite presentation if the sub-module L(σ) is not admissible,
which means that the space L(σ)U of the U -invariants in L(σ) is infinite-dimensional over k. The
non-admissibility of L(σ) is proved by explicitly finding invariant elements which is similar to works
in [4], [15], [14] and [9]. A key observation is that the module structure of L(σ) over the coherent ring
guarantees that dimk L(σ)U =∞ if dimk L(σ)U ≥ 2. As a corollary, following [8] and [16], our result
gives a uniform proof for the following fact.

Corollary 1.2 (4.5). For any smooth irreducible representation σ of KZ, the universal supersingular
representation indGKZσ/T (indGKZσ) of GL2(F ) is not admissible if F 6= Qp.

Organization of the note. In § 2, we recall basic facts on mod-p representations of GL2(F ) and Emer-
ton’s coherent rings. We prove the main result in § 3 with the proof for non-admissibility postponed to
§ 4.

Notations. We fix a uniformizer $ of F . Let kF be the residue field of O. Let d = [F : Qp],
f = [kF : Fp], e = d/f and q = pf . Let G = GL2(F ), K = GL2(O) and Z be the center of

G. Let K1 be the kernel of the reduction map K → GL2(kF ). Let U =

{(
1 a

1

)
, a ∈ O

}
and

α =

(
$

1

)
. Let k be an algebraically closed field of characteristic p. We identify kF = Fq and fix

an embedding kF ↪→ k. All the representations in the note are on vector spaces over k.
Acknowledgement. The author would like to express his sincere gratitude to his advisor Prof. Ben-

jamin Schraen for suggesting the problem and for helpful discussions. The author would like to
thank the anonymous referees for their comments and suggestions. The author thanks the Fondation
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2. PRELIMINARY ON REPRESENTATIONS AND COHERENT RINGS

Mod-p representations of GL2. We recall some results and notations in [3] and [4]. Let π be a smooth
irreducible representation of G with central character over k. Then π contains an irreducible sub-KZ-
representation σ ofKZ. Let indGKZσ be the compactly induced representation: the representation space
consists of functions f : G → σ such that f is compactly supported modulo KZ and f(k·) = k.f(·)
for any k ∈ KZ and the action of G is given by right translations. There is a distinguished element
T ∈ EndG(indGKZσ) which generates the Hecke algebra. By the definition and the classification in
[3], π is supersingular if and only if there exists a surjection indGKZσ � π induced by an inclusion
σ ↪→ π|KZ and the Frobenius reciprocity such that the surjection factors through a map

indGKZσ/T (indGKZσ) � π

for some or every such σ.
If 0 ≤ r ≤ p− 1 is an integer, let Symr be the r-th symmetric power of the standard representation

of GL2(Fq) on two-dimensional space k2 via the embedding Fq ↪→ k. If ~r = (r0, · · · , rf−1) ∈ Zf

with 0 ≤ rj ≤ p− 1 for any 0 ≤ j ≤ f − 1, we get a representation Sym~r := ⊗f−1j=0Symrj ◦ Frj , where

Fr denotes the automorphism of GL2(Fq) induced by the Frobenius automorphism of Fq. If ~a,~b ∈ Zf ,
we say ~a ≤ ~b if aj ≤ bj for any j = 0, · · · , f − 1. The representation Sym~r has a model consisting of
homogeneous polynomials spanned by a basis {⊗f−1j=0x

rj−ij
j y

ij
j }0≤~i≤~r. The group action is given by(

a b
c d

)
.⊗f−1j=0 x

rj−ij
j y

ij
j = ⊗f−1j=0 (ap

j
xj + cp

j
yj)

rj−ij (bp
j
xj + dp

j
yj)

ij ,

for any 0 ≤ ~i ≤ ~r,

(
a b
c d

)
∈ GL2(Fq). We abbreviate x~r−~iy~i := ⊗f−1j=0x

rj−ij
j y

ij
j . If χ : F×q → k×

is a character of F×q , χ ◦ det is a character of GL2(Fq). We can naturally inflate the representation
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(χ ◦ det) ⊗ Sym~r of GL2(Fq) to a representation of K by letting K1 act trivially. Then the smooth
irreducible KZ-representation σ is isomorphic to (χ ◦ det) ⊗ Sym~r when restricted to K for a unique

χ : F×q → k× and ~r as above and the action of
(
$

$

)
∈ Z on σ is given by a scalar ν ∈ k×.

If g ∈ G,w ∈ σ, let [g, w] ∈ indGKZσ be the element given by

[g, w](g′) =

{
g′g.w if g′g ∈ KZ,

0 if g′g /∈ KZ.

Then g′.[g, w] = [g′g, w],∀g′, g ∈ G,w ∈ σ. If S ⊂ G is a subset, let [S, σ] be the subspace of indGKZσ
spanned by [g, w], w ∈ σ, g ∈ S.

If λ ∈ Fq, we let [λ] be the Teichmüller lift of λ in F . For any integer n ≥ 1, the set In :=
{[λ0]+$[λ1]+ · · ·+$n−1[λn−1], λi ∈ Fq} is a complete set of representatives ofO/$nO. We define
I0 = {0}. If λ = [λ0]+$[λ1]+ · · ·+$n−1[λn−1] ∈ In, let [λ]n−1 := λ−$n−1[λn−1] ∈ In−1. If~i ∈

Zf , λ ∈ Fq, we use the notation λ~i := λ
∑

0≤j≤f−1 p
jij . The element

[(
$n λ

1

)
,
∑
~0≤~i≤~r u~ix

~r−~iy
~i

]
∈

indGKZσ where u~i ∈ k for any ~i, n ∈ N, λ ∈ In. The action of the operator T on the element is
calculated as in [4] (or see Proposition 2.1, [9]). If n ≥ 1, µ ∈ In,

(2.1)

T

($n µ
1

)
,
∑

0≤~i≤~r

u~ix
~r−~iy

~i

 =
∑
λ∈Fq

($n+1 µ+$n[λ]
1

)
, (
∑

0≤~i≤~r

u~i(−λ)
~i)x~r


+ ν

[(
$n−1 [µ]n−1

1

)
, u~r ⊗f−1j=0 (µp

j

n−1xj + yj)
rj

]
,

T

(1
1

)
,
∑

0≤~i≤~r

u~ix
~r−~iy

~i

 =
∑
λ∈Fq

($ [λ]
1

)
, (
∑

0≤~i≤~r

u~i(−λ)
~i)x~r


+

[(
1

$

)
, u~ry

~r

]
.

A class of coherent rings. We now recall some results in [8] and [16] on a type of coherent rings and
their applications on representations of GL2. Assume A is a complete regular local ring of dimension
d with residue field k and maximal ideal m. Assume φ : A → A is a local flat ring endomorphism of
A and assume φ is equal to the identity map on k after reduction modulo m. We let A[X]φ be the ring
of polynomials in variable X with commutative relation Xa = φ(a)X,∀a ∈ A. By Proposition 1.3 in
[8], A[X]φ is a coherent ring which means that any finitely generated submodule of a finitely presented
left A[X]φ-module is finitely presented.

Modulo m, we get a ring morphism A[X]φ → k[X]. If M is a left A[X]φ-module, there are natural

isomorphisms TorA[X]φ
i (k[X],M) ' TorAi (k,M) for all i ≥ 0 (Lemma 2.1, [8]). The isomorphisms

equip the k-spaces TorAi (k,M) k[X]-module structures. If M is a finitely presented A[X]φ-module,
then for any i ≥ 0, TorAi (k,M) is a finitely generated k[X]-module (Proposition 2.2, [8]).

An A-module is called smooth if any finitely generated submodule is Artinian. An A[X]φ-module is
called smooth if the underlying A-module is smooth. If M is an A-module, we let M [m] = {x ∈ M |
mx = 0,∀m ∈ m}. There is a non-canonical isomorphism between functor M 7→ M [m] and functor
M 7→ TorAd (k,M). An A-module M is called admissible if it is smooth and M [m] ' TorAd (k,M)
is finite-dimensional over k. An A[X]φ-module is called admissible if the underlying A-module is
admissible.
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From now on, we let A := k[[U ]] = lim←− k[U/N ], where N ranges over all open normal subgroups
of U , be the Iwasawa algebra of U . Then A ' k[[X1, · · · , Xd]] the ring of formal power series in d

variables with maximal ideal m = (X1, · · · , Xd). The action of α =

(
$

1

)
on U : u 7→ αuα−1

induces a flat local morphism φ : A→ A. If Π is a smooth representation of U , Π is naturally a smooth
A-module and ΠU = Π[m]. Thus the representation Π is an admissible A-module if and only if Π

is an admissible U -representation. Any representation Π of monoid
(
$N O

1

)
is now naturally an

A[X]φ-module where X acts by the action of α on Π.

Let σ be an irreducible smooth representation ofKZ. For any n ≥ 0, letRn(σ) :=

[(
$n O

1

)
, σ

]
which is a sub-A-module of indGKZσ. For any k ∈ N, we let

I≥k(σ) :=
⊕
n≥k

Rn(σ), Ie≥k(σ) :=
⊕

n≥k,2|n

Rn(σ), Io≥k(σ) :=
⊕

n≥k,2-n

Rn(σ),

be subspaces of indGKZσ. We let φ2 := φ2 : A→ A. We have (Lemma 2.11, [16])

Ie≥0(σ) ' A[X]φ2 ⊗A σ, Io≥1(σ) ' A[X]φ2 ⊗A R1(σ)

as A[X]φ2-modules.
By the formula of the operator T (2.1), we have T (Rn(σ)) ⊂ Rn+1(σ)⊕Rn−1(σ) if n ≥ 1. Hence

T (I≥1(σ)) ⊂ I≥0(σ) and T (Io≥1(σ)) ⊂ Ie≥0(σ), etc. We decompose T |I≥1(σ) = T+ + T− by the
decomposition T |Rn(σ) = T+|Rn(σ) + T−|Rn(σ), where T+|Rn(σ) : Rn(σ)→ Rn+1(σ) and T−|Rn(σ) :
Rn(σ)→ Rn−1(σ) are compositions of the projections to the direct sum factors ofRn+1(σ)⊕Rn−1(σ)
and T |Rn(σ), for all n ≥ 1.

Let L(σ) := Ie≥0(σ)/T (Io≥1(σ)). Then L(σ) is an A[X]φ2-module. The following proposition is
essentially Proposition 2.23 in [16] which we recall the proof.

Proposition 2.1. TorA0 (k, L(σ)) = 0. The k[X]-torsion part of TorAd (k, L(σ)) is isomorphic to k =

k[X]/(X) and coincides with the image of TorAd (k, σ) via the morphism σ ↪→ Ie≥0(σ) � L(σ).

Proof We have an exact sequence

0→ TorAd (k, Io≥1(σ))
TorAd (T )→ TorAd (k, Ie≥0(σ))→ TorAd (k, L(σ))→ TorAd−1(k, I

o
≥1(σ)) · · ·

· · · → TorA0 (k, Io≥1(σ))
TorA0 (T )
→ TorA0 (k, Ie≥0(σ))→ TorA0 (k, L(σ))→ 0.

And TorAi (k, Ie≥0(σ)) ' ⊕k≥0TorAi (k,R2k(σ)),TorAi (k, Io≥1(σ)) ' ⊕k≥0TorAi (k,R2k+1(σ)) for i ∈
N.

By Lemma 2.12 in [16], TorA0 (T+) = 0, TorA0 (T−) = TorA0 (T ) and TorA0 (T−) sends each TorA0 (k,R2k+1(σ))
onto TorA0 (k,R2k(σ)). Hence TorA0 (T ) in the above diagram is a surjection and TorA0 (k, L(σ)) = 0.
Since TorAd−1(k, I

o
≥1(σ)) ' TorAd−1(k,A[X]φ2 ⊗A (A ⊗φ,A σ)) ' k[X] ⊗k TorAd−1(k,A ⊗φ,A σ) by

Proposition 1.4 in [16], the k[X]-module TorAd−1(k, I
o
≥1(σ)) is torsion free. Hence TorAd (k, L(σ))tors =

coker(TorAd (T ))tors. By Lemma 2.12 in [16] again, TorAd (T−) = 0 and TorAd (T+) sending TorAd (k,R2k+1(σ))

to TorAd (k,R2k+2(σ)) is an isomorphism. Thus the image of TorAd (T ) in TorAd (k, Ie≥0(σ)) is⊕k≥1TorAd (k,R2k(σ)).
Since R0(σ) = σ, TorAd (k, L(σ))tors coincides with the image of TorAd (k, σ) via the map σ ↪→
Ie≥0(σ) � L(σ) in L(σ). Finally, TorAd (k, σ) ' σU is one-dimensional over k by Lemma 2 in [3]. �

We recall the following key lemma on smooth finitely presented A[X]φ-modules in [16].
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Lemma 2.2 ([16], Lemma 1.13). Let M be a smooth finitely presented A[X]φ-module. Then there
exists an increasing sequence of sub-A[X]φ-modules (Mi)i≥0, a sequence of finite-dimensional k-
vector spaces (Vi)i≥0 such that there exist isomorphismsMi+1/Mi ' A[X]φ⊗AVi asA[X]φ-modules,
and if we let M̃ = ∪iMi, then TorAd (k,M)tors ' TorAd (k,M/M̃). In particular, M/M̃ is admissible
and each Mi is of finite presentation.

3. PRESENTATIONS OF SUPERSINGULAR REPRESENTATIONS

We prove some lemmas on A[X]φ-modules.

Lemma 3.1. Let M be a non-zero, smooth, finitely presented A[X]φ-module. Assume that TorAd (k,M)

is a torsion free k[X]-module. Then TorA0 (k,M) is infinite-dimensional over k.

Proof By Lemma 2.2, we can find an increasing sequence of sub-A[X]φ-modules (Mi)i≥0, a se-
quence of finite-dimensional k-vector spaces (Vi)i≥0 such that there exist isomorphisms Mi+1/Mi '
A[X]φ ⊗A Vi of A[X]φ-modules with M0 = 0, and if we let M̃ = ∪iMi, then TorAd (k,M)tors '
TorAd (k,M/M̃). Thus TorAd (k,M/M̃) = 0 by assumptions. Hence M = M̃ by Lemma 1.8 in [16].
Since M is finitely generated, there exists a minimal n ∈ N such that M = Mn. Since M is non-zero,
we have n ≥ 1 and Mn 6= Mn−1. We have a surjection

M �M/Mn−1 ' A[X]φ ⊗A Vn−1.
Thus we have a surjection

TorA0 (k,M) � TorA0 (k,A[X]φ ⊗A Vn−1).
But by Proposition 1.4 and Example 1.6 in [16], TorA0 (k,A[X]φ ⊗A Vn−1) ' k[X] ⊗ TorA0 (k, Vn−1)

is a free k[X]-module of rank dimkVn−1. Assume that TorA0 (k,M) is finite-dimensional over k. Then
Vn−1 is zero by the surjection above. This contradicts that Mn 6= Mn−1. Hence TorA0 (k,M) is infinite-
dimensional over k. �

Lemma 3.2. Let M be a smooth, finitely presented A[X]φ-module and N be a non-zero sub-A[X]φ-
module of M . Assume that M/N is finitely presented and admissible, and TorAd (k,N) is torsion free.
Then TorA0 (k,M) is infinite-dimensional over k.

Proof Since M/N and M are finitely presented, by the coherence of A[X]φ (Proposition 1.3, [8]), N
is of finite presentation. Thus by Lemma 3.1, TorA0 (k,N) is infinite-dimensional over k. Consider the
long exact sequence

· · · → TorA1 (k,M/N)→ TorA0 (k,N)→ TorA0 (k,M)→ TorA0 (k,M/N)→ 0.

Since M/N is admissible, by Corollary 1.12 in [16], TorA1 (k,M/N) and TorA0 (k,M/N) are finite-
dimensional over k. Since TorA0 (k,N) is infinite-dimensional over k, so is TorA0 (k,M). �

Definition 3.3. A smooth representation π of G is called of finite presentation if there exists an irre-
ducible smooth representation σ of KZ and a surjection

indGKZσ � π

such that the kernel is finitely generated as a k[G]-module.

Remark 3.4. By Proposition 4.4 in [11], if π is of finite presentation, then for all smooth finite-
dimensional sub-KZ-representation σ of π which generates the G-representation π, the kernel of the
surjection indGKZσ � π is finitely generated as a k[G]-module.

Remark 3.5. If F = Qp, then by the classifications in [3] and [4], any irreducible representation of
GL2(Qp) with central character is of finite presentation.
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Assume π is a smooth irreducible representation of G with central character, and σ ⊂ π is an irre-

ducible smooth sub-KZ-representation. Let I+(π, σ) :=

(
$N O

1

)
σ ⊂ π be the A[X]φ-submodule

of π generated by σ. Then I+(π, σ) is the image of I≥0(σ) in π via the map indGKZσ � π. We recall
the following result of Yongquan Hu.

Theorem 3.6 ([11], Theorem 1.3). If π is of finite presentation, then I+(π, σ)U is a finite-dimensional
k-vector space.

We will prove the following theorem in § 4.

Theorem 3.7. The A-module L(σ) is not admissible if [F : Qp] ≥ 2. In particular, the k[X]-module
TorAd (k, L(σ)) is not torsion.

Now assuming Theorem 3.7, we prove the main theorem.

Theorem 3.8. If π is a smooth supersingular representation of GL2(F ) with central character, then π
is not of finite presentation when [F : Qp] ≥ 2.

Proof We can find a surjection indGKZ(σ)/(T ) � π for some irreducible smooth sub-KZ-representation
σ of π by the definition of supersingular representations. Let I+(π, σ) be the A[X]φ-submodule of π
generated by σ and let M(π, σ) be the A[X]φ2-submodule of π generated by σ. Then M(π, σ) ⊂
I+(π, σ). The map of A[X]φ2-modules Ie≥0(σ) ↪→ indGKZσ → π factors through L(σ) → π with
image M(π, σ). Let N(π, σ) be the kernel of the morphism L(σ) → M(π, σ) of A[X]φ2-modules.
We have an exact sequence

0→ TorAd (k,N(π, σ))→ TorAd (k, L(σ))→ TorAd (k,M(π, σ)).

By Proposition 2.1, TorAd (k, L(σ))tors is generated by the image of σU ' TorAd (k, σ) via the map
σ → Ie≥0(σ) � L(σ). The non-zero composition map σ → L(σ) → M(π, σ) induces morphisms
TorAd (k, σ)

∼→ TorAd (k, L(σ))tors → TorAd (k,M(π, σ)). The composition σ → M(π, σ) is injec-
tive since σ is irreducible. Since TorAd (k,−) is left exact, we get an injection TorAd (k, L(σ))tors ↪→
TorAd (k,M(π, σ)). Then TorAd (k,N(π, σ)) must be a torsion free k[X]-module.

Now if π is finitely presented, M(π, σ) ⊂ I+(π, σ) is admissible by Hu’s result (Theorem 3.6).
Since M(π, σ) is generated by σ, it is a finitely generated A[X]φ2-module. Moreover, the proof of
Theorem 2.24 in [16] shows that M(π, σ) is of finite presentation (M(π, σ) is stable under the action

of H =

(
O×

1

)
, then use Lemma 2.6 in [16]). If N(π, σ) 6= 0, then all the assumptions in Lemma

3.2 are satisfied if we takeM = L(σ) andN = N(π, σ). Remark that here L(σ), N(π, σ) are modules
over the coherent ring A[X]φ2 rather than A[X]φ, but Lemma 3.2 holds true for A[X]φ2 . Thus by
Lemma 3.2, TorA0 (k, L(σ)) has infinite dimension over k, which contradicts that TorA0 (k, L(σ)) = 0
(Proposition 2.1)! HenceN(π, σ) = 0. ThenL(σ) 'M(π, σ) is admissible. This contradicts Theorem
3.7! Hence π is not of finite presentation. �

4. NON-ADMISSIBILITY

Assume σ = Sym~r ⊗ (χ ◦ det), where ~r = (r0, · · · , rf−1) such that 0 ≤ r0, · · · , rf−1 ≤ p − 1, is
an irreducible representation of KZ with $ ∈ Z acting on σ as a scalar ν ∈ k×. Recall that

R1(σ) =
⊕
µ∈Fq

[(
$ [µ]

1

)
, σ

]
, R2(σ) =

⊕
µ,λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, σ

]
.
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For any µ ∈ Fq, u~i ∈ k,~i ∈ Zf ,~0 ≤~i ≤ ~r, the operators T± act on
[(
$ [µ]

1

)
,
∑

0≤~i≤~r u~ix
~r−~iy

~i

]
∈

R1(σ) by the formulas (see (2.1)):

T+

($ [µ]
1

)
,
∑

0≤~i≤~r

u~ix
~r−~iy

~i

 =
∑
λ∈Fq

($2 [µ] +$[λ]
1

)
, (
∑

0≤~i≤~r

u~i(−λ)
~i)x~r

(4.1)

T−

($ [µ]
1

)
,
∑

0≤~i≤~r

u~ix
~r−~iy

~i

 = ν

[(
1

1

)
, u~r ⊗f−1j=0 (µp

j
xj + yj)

rj

]
.(4.2)

Proof of Theorem 3.7 We need to prove that L(σ)U is infinite-dimensional over k. By Proposition 2.1,
the torsion part of the k[X]-module TorAd (k, L(σ)) ' L(σ)U has only dimension 1. If dimkL(σ)U ≥ 2,
the free part of the k[X]-module TorAd (k, L(σ)) can not be zero and then TorAd (k, L(σ)) is infinite-
dimensional over k since a non-zero free k[X]-module is infinite-dimensional over k. So we only need
to prove that dimkL(σ)U ≥ 2 to show that L(σ) is not an admissible A-module. We will prove

Lemma 4.1. If [F : Qp] ≥ 2, there exists an element g ∈ R2(σ) such that g /∈ T+R1(σ) and
ug − g ∈ TR′1(σ) for any u ∈ U , where R′1(σ) is the kernel of T−|R1(σ).

Now assume there exists an element g as in Lemma 4.1. Then the image of g in L(σ) lies in
L(σ)U since ug − g ∈ TR′1(σ) ⊂ TIo≥1(σ) which is zero in L(σ) = Ie≥0(σ)/TIo≥1(σ) for any
u ∈ U . We claim that the image of g doesn’t lie in the image of R0(σ) in L(σ). Otherwise there
exist a ∈ R0(σ), x ∈ Io≥1(σ) such that g − a = Tx. Assume x =

∑
k∈N x2k+1, where each x2k+1 ∈

R2k+1(σ) and there are only finitely many k such that x2k+1 6= 0. Since g /∈ T+R1(σ), g 6= 0 and
we may assume x 6= 0. Let k0 be the maximal integer such that x2k0+1 6= 0. Then Tx = T−(x1) +∑k0

k=0(T+(x2k+1) + T−(x2k+3)) ∈ R0(σ)⊕ (⊕k0k=0R2k+2(σ)). Since Tx = g − a ∈ R0(σ)⊕R2(σ),
if k0 6= 0, T+(x2k0+1) = 0 ∈ R2k0+2(σ). This contradicts that T+ is injective (Lemma 2.12 in [16])
and x2k0+1 is not 0. If k0 = 0, then g = T+(x1) ∈ T+R1(σ), which contradicts our choice of g in the
Lemma 4.1. Hence the image of g in L(σ) doesn’t lie in the image of R0(σ) in L(σ). Thus the image
of σU and g in L(σ) span a two-dimensional subspace of L(σ)U . This proves that dimk(L(σ)) ≥ 2
and L(σ) is not admissible. �

Before the proof of Lemma 4.1, we remark the following simple facts.

Lemma 4.2. LetF =
∑

i aiX
i ∈ k[X] be a polynomial of degree no more than q−1, then

∑
t∈Fq F (t) =

−aq−1.

Lemma 4.3 ([15], Lemma 2.2). For any a, b ∈ Fq, [a] + [b] ≡ [a + b] + $e[P (a, b)] mod $e+1,

where P (a, b) = aq
e
+bq

e−(a+b)qe

$e .

Proof of Lemma 4.1 Our method is to find a concrete required element g in all possible cases. We
remark firstly that by (4.1), T+R1(σ) is spanned (over k) by elements∑

λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, λ
~ix~r
]

where ~0 ≤~i ≤ ~r and µ ∈ Fq. Moreover
∑

λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, λ
~ix~r
]

lies in T+R′1(σ) if~i < ~r

by (4.1) and (4.2), here~i < ~r means~i ≤ ~r and~i 6= ~r. Since T± are U -equivariant, R′1(σ) and T+R′1(σ)

are stable under the action of U . Moreover, α3Uα−3 =

(
1 $3O

1

)
acts trivially on R2(σ).
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1) Assume F is ramified over Qp with e ≥ 2. We have

[a] + [b] ≡ [a+ b] mod $2,

by Lemma 4.3.
If dimk(σ) > 1, there exists j0 such that rj0 ≥ 1. Let ~i′ = (i′0, · · · , i′f−1) ∈ Zf where i′j = 0 if

j 6= j0 and i′j0 = 1. Then ~i′ ≤ ~r. We take

g =
∑

µ,λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, x~r−

~i′y
~i′
]
.

Then g /∈ T+R1(σ). For a ∈ Fq, we calculate that

(
1 $[a]

1

)
g − g =

∑
µ,λ∈Fq

[(
$2 [µ] +$[a] +$[λ]

1

)
, x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
$2 [µ] +$[a+ λ]

1

)
,

(
1 [a]+[λ]−[a+λ]

$
1

)
x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
$2 [µ] +$[a+ λ]

1

)
,

(
1 $ · [a]+[λ]−[a+λ]

$2

1

)
x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
$2 [µ] +$[a+ λ]

1

)
, x~r−

~i′y
~i′
]
− g

= 0

For all a, b, µ ∈ Fq, let ta,b,µ be the image of [b] + [a]+[µ]−[a+µ]
$2 in Fq, then

(
1 [a] +$2[b]

1

)
g − g =

∑
µ,λ∈Fq

[(
$2 [a] + [µ] +$2[b] +$[λ]

1

)
, x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
$2 [µ+ a] +$[λ]

1

)
,

(
1 [b] + [a]+[µ]−[a+µ]

$2

1

)
x~r−

~i′y
~i′ − x~r−~i′y~i′

]

=
∑

µ,λ∈Fq

[(
$2 [µ+ a] +$[λ]

1

)
, tp

j0

a,b,µx
~r

]

= T+

∑
µ∈Fq

[(
$ [µ]

1

)
, tp

j0

a,b,µ−ax
~r

] ∈ T+R′1.

Since
(

1 $[a]
1

)
,

(
1 [a] +$2[b]

1

)
, a, b ∈ Fq generateU/α3Uα−3, we see that g ∈ (R2(σ)/T+R

′
1(σ))U

and g /∈ T+R1(σ).
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If dimk(σ) = 1, ~r = ~0. We take g =
∑

µ,λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, λ

]
. Then g /∈ T+R1(σ) as

T+R1(σ) is spanned by
∑

λ∈Fq

[(
$2 [µ] +$[λ]

1

)
, 1

]
by (4.1). Then for any a, b, c ∈ Fq,

(
1 [a] +$[b] +$2[c]

1

)
g − g

=
∑

µ,λ∈Fq

[(
$2 [a+ µ] +$[λ+ b]

1

)
,

(
1 [c] + [a]+[µ]−[a+µ]

$2 + [b]+[λ]−[b+λ]
$

1

)
λ

]
− g

=
∑

µ,λ∈Fq

[(
$2 [a+ µ] +$[λ+ b]

1

)
, λ− (λ+ b)

]

=
∑

µ,λ∈Fq

[(
$2 [a+ µ] +$[λ+ b]

1

)
,−b

]

= T+

∑
µ∈Fq

[(
$ [µ]

1

)
,−b

] ∈ T+R′1(σ)

since T−

(∑
µ∈Fq

[(
$ [µ]

1

)
,−b

])
= ν

[(
1

1

)
,
∑

µ∈Fq −b
]

= 0 by (4.2).

2) Assume F is unramified. Then f > 1, $ = p. By the theory of Witt vectors, there exist
polynomials P1, P2 ∈ Z[x, y] such that for any a, b ∈ Fq, [a]+ [b] ≡ [a+b]+p[P1(a, b)]+p2[P2(a, b)]

mod p3. Since P1(a, b) = F (a1/p, b1/p) = F (ap
f−1

, bp
f−1

) where F (x, y) = xp+yp−(x+y)p
p , we can

assume P1 is a polynomial of degree no more than pf−1(p− 1) in each variable (or see Lemma 4.3).
If there exists j0 ∈ {0, · · · , f − 1} such that rj0 + 1 ≤ p− 1 (i.e. ~r 6= (p− 1, · · · , p− 1)), we take

g =
∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, λp

j0 (rj0+1)x~r
]
.

We claim that g /∈ T+R1(σ). Otherwise, for each µ ∈ Fq, there exist u~i ∈ k for ~0 ≤~i ≤ ~r such that

∑
λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, λp

j0 (rj0+1)x~r
]

=
∑
λ∈Fq

(p2 [µ] + p[λ]
1

)
, (
∑

0≤~i≤~r

u~i(−λ)
~i)x~r

 .

Then λp
j0 (rj0+1) =

∑
~i≤~r u~i(−1)

~iλ
~i for every λ ∈ Fq. This is impossible since the polynomial

Xpj0 (rj0+1) −
∑

0≤~i≤~r u~i(−1)
~iX

∑
0≤j≤f−1 p

jij ∈ k[X] is not zero and has degree no more than q − 2

(by f > 1 and ~r 6= (p − 1, · · · , p − 1)). For any a, b, c ∈ Fq, we calculate that (using x~r ∈ σU and
9



[a] + [b] ≡ [a+ b] + p[P1(a, b)] mod p2)

(
1 [a] + p[b] + p2[c]

1

)
g − g

=
∑

µ,λ∈Fq

[(
p2 [a] + [µ] + p[λ] + p[b] + p2[c]

1

)
, λp

j0 (rj0+1)x~r
]
− g

=
∑

µ,λ∈Fq

[(
p2 [a+ µ] + p[λ+ b+ P1(a, µ)]

1

)
, λp

j0 (rj0+1)x~r
]
− g

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, ((λ− b− P1(a, µ− a))p

j0 (rj0+1) − λpj0 (rj0+1))x~r
]
,(4.3)

Write (λ − b − P1(a, µ − a))p
j0 (rj0+1) − λp

j0 (rj0+1) =
∑

0≤i≤rj0
gi(µ)(−λ)p

j0 i, where gi(µ) are
polynomials in µ (depending also on a, b).

First assume pj0rj0 6= r =
∑f−1

j=0 rjp
j . For any 0 ≤ i ≤ rj0 , let~ij0 = (i1, · · · , if−1) ∈ Zf−1 such

that ij = 0 if j 6= j0 and ij0 = i. Then~ij0 < ~r for any i ≤ rj0 . Hence the last term in (4.3)

∑
µ,λ∈Fq

(p2 [µ] + p[λ]
1

)
, (
∑

0≤i≤rj0

gi(µ)(−λ)p
j0 i)x~r


=
∑
µ∈Fq

T+

(p [µ]
1

)
,
∑

0≤i≤rj0

gi(µ)x~r−
~ij0y

~ij0


lies in T+R′1 and we have found a required g.

Otherwise r = pj
′
rj′ for some j′. If ~r 6= 0, we can choose in the beginning j0 6= j′ with rj0 = 0

since f ≥ 2 and rj0 + 1 = 1 ≤ p − 1. Then 0 = pj0rj0 6= r, we return to the previous case and
we can find a required g. If ~r = 0, we can let j0 = 0, then rj0 = 0. Then the last term in (4.3) is∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, g0(µ)

]
= T+

(∑
µ∈Fq

[(
p [µ]

1

)
, g0(µ)

])
. We have

T−

∑
µ∈Fq

[(
p [µ]

1

)
, g0(µ)

] = ν

(1
1

)
,
∑
µ∈Fq

g0(µ)

 = 0

by Lemma 4.2 and g0(µ) is a polynomial of µ of degree (p−1)pf−1 < q−1. Hence ug−g ∈ T+R′1(σ)
for any u ∈ U . We have found a required g.

(3) Now we remain the case when F is unramified over Qp, f ≥ 2 and ~r = (p− 1, · · · , p− 1). Let
~i′ = (i′0, · · · , i′f−1) where i′j = 0 if j 6= 0 and i′0 = 1. Take

g =
∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, x~r−

~i′y
~i′
]
.
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Then g /∈ T+R1 as ~i′ 6= ~0. For any a, b ∈ Fq, we calculate that (using
(

1 a
1

)
x~r−

~i′y
~i′ = ax~r +

x~r−
~i′y

~i′)(
1 p[a] + p2[b]

1

)
g − g

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[a] + p[λ] + p2[b]

1

)
, x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[a+ λ] + p2[P1(a, λ)] + p2[b] + p3 [a]+[λ]−[a+λ]−p[P1(a,λ)]

p2

1

)
, x~r−

~i′y
~i′

]
− g

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[a+ λ]

1

)
,

(
1 [P1(a, λ)] + [b]

1

)
x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, (P1(a, λ− a) + b)x~r

]
.

P1(a, λ− a) + b is a polynomial of λ with degree no more than pf−1(p− 1) < q− 1, the last term lies

in T+R′1 by the remark at the beginning (
∑

λ∈Fq

[(
p2 [µ] +$[λ]

1

)
, λ
~ix~r
]

lies in T+R′1(σ) if~i < ~r).

For any a ∈ Fq,(
1 [a]

1

)
g − g

=
∑

µ,λ∈Fq

[(
p2 [a] + [µ] + p[λ]

1

)
, x~r−

~i′y
~i′
]
− g

=
∑

µ,λ∈Fq

[(
p2 [µ+ a] + p[λ+ P1(a, µ)]

1

)
,

(
1 [P2(a, µ)] + [P1(λ, P1(a, µ))]

1

)
x~r−

~i′y
~i′ − x~r−~i′y~i′

]

=
∑

µ,λ∈Fq

[(
p2 [µ+ a] + p[λ+ P1(a, µ)]

1

)
, (P2(a, µ) + P1(λ, P1(a, µ)))x~r

]

=
∑

µ,λ∈Fq

[(
p2 [µ] + p[λ]

1

)
, (P2(a, µ− a) + P1(λ− P1(a, µ− a), P1(a, µ− a)))x~r

]
.

(P2(a, µ − a) + P1(λ − P1(a, µ − a), P1(a, µ − a))) is a polynomial of λ of degree no more than
pf−1(p− 1) < q − 1. By the remark at the beginning, the last term lies in T+R′1(σ).

Since
(

1 [a]
1

)
,

(
1 p[b] + p2[c]

1

)
, a, b, c ∈ Fq generate U/α3Uα−3, g ∈ (R2(σ)/T+R

′
1(σ))U .

Thus we have found a required g. �

Remark 4.4. Those g in Lemma 4.1 have been found for many cases in [4], [15], [14] and [9].

Corollary 4.5. For any smooth irreducible representation σ of KZ, the universal supersingular repre-
sentation of G indGKZσ/T (indGKZσ) is not admissible if F 6= Qp.

Proof Same as Corollary 2.21 in [16], using Proposition 4.5 in [8]. �
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[17] Marie-France Vignéras. Le foncteur de Colmez pour GL(2, F ). Advanced Lectures in Mathematics (ALM), 19:531–557,

01 2011.
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