COMPANION POINTS ON THE EIGENVARIETY WITH NON-REGULAR WEIGHTS

ZHIXIANG WU

ABSTRACT. We prove the existence of all companion points on the eigenvariety of definite unitary
groups associated with generic crystalline Galois representations with possibly non-regular weights
under the Taylor-Wiles hypothesis, based on the previous results of Breuil-Hellmann-Schraen in [§]]
in regular cases and the author in [33]] in non-regular cases.

1. INTRODUCTION

Let p be a prime number, then there exists pairs of (p-adic) elliptic modular eigenforms (f, g)
of level T'o(p) N T'1 (V) for some p 1 N such that f and g share the same eigenvalues for Hecke
operators Ty when £ t pN (i.e. f and g are associated with the same p-adic Galois representation),
but have different non-zero eigenvalues for the U),-operator. The results on the existence of such
companion forms for p-adic or mod-p modular forms, as of Gross in [[18]], have many significant
applications. For example, Buzzard and Taylor ([11]], and see [[10]]) use Gross’s results to prove the
classicality of overconvergent p-adic weight one modular forms (hence certain cases of the Artin’s
conjecture), and their methods have been successfully generalized for Hilbert modular forms of
parallel weight one, e.g., [30], [31] and [32].

In [19]], Hansen made a conjecture on the existence of all companion forms for finite slope
overconvergent p-adic automorphic forms of general GL,, in the language of determining the set
of companion points on the eigenvariety that are associated with the same p-adic Galois represen-
tation but with possibly different U,,-eigenvalues or weights. Similar to the weight part of Serre’s
modularity conjecture, the recipes for companion forms are given by the p-adic local Galois rep-
resentations. In fact, the conjecture on companion points is closely related to Breuil’s locally
analytic socle conjecture in [Sl][4] from the point of view of the local-global compatibility in the
locally analytic aspect of the p-adic local Langlands program.

We will work in the setting of definite unitary groups as Breuil. Let F' be a quadratic imaginary
extension of a totally real field F'". Let S, be the set of places of F' that divide p. We assume that
each v € S, splits in F'. Let G be a definite unitary group of rank n > 2 over F'* that is split over

F (so that G(F* ®q Qp) = [[,es, GLn(F,")). Then an eigenvariety Y (U?, p) of G, of certain
tame level UP and localized at a modular absolutely irreducible p : Gal(F/F) — GL,(F,), is a

rigid analytic space parametrizing pairs (p, §) where p : Gal(F/F) — GLy(Q,) are continuous
representations which lift p and § = (0, )ves, = (0vi)ves,,i=1,-n : Hvesp((Fj)X)” — @; isa
continuous character such that p is associated with a finite slope overconvergent p-adic automor-

phic form of G which has “weight” § ’H (©%,yn and has “Up-eigenvalues” [ ];_; v, (@ p+)
FU

vESp
forv € Sp,i =1,---n where @+ denotes some uniformizers.

Recall an algebraic character of F.\ has the form (F,/)* — @; vz [ -7, 7(2)k" for
some k. € Z. Now take a point z = (p,d) € Y (UP,p) and assume that p, := p |Ga1(ﬁ/F~) is
crystalline for all v € S, where v | v is a place of F' chosen for each v € S),. Then ¢ is locally
algebraic, i.e. § = 0,140y, Where each dy1g, ; is algebraic and dsp o,; is smooth. A companion
point (p, d") of x falls in one of the following two types:

(a) g 7# Jaig bUt 0%y, = gy, (different “weights™);
(b) 8., # O, (different “U,-eigenvalues up to some normalizations™).
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Our main theorem is the following.

Theorem 1.1 (Theorem [5.2). Suppose that x = (p,8) € Y (UP,p) is a point such that p, is
generic crystalline (see for the generic condition) for all v € S,,. Assume the tame level is
sufficiently small and the usual Taylor-Wiles hypothesis (Assmption[5.1). Then all the companion
points of x in the conjecture of Hansen or Breuil appear on'Y (UP, p).

The above theorem was already proved by Breuil-Hellmann-Schraen in [§] under the assump-
tion that the Hodge-Tate weights of each p,, are regular (i.e. pairwise different). In [33]], the author
removed the regular assumption on the Hodge-Tate weights, but only was able to prove the ex-
istence of all companion points of the type (a) above in the non-regular cases. The task of this
paper is to find all companion points of type (b) for non-regular points. These are companion
points corresponding to different triangulation (refinements) of the trianguline (crystalline) Galois
representations.

The proof of our theorem is motivated by some arguments in ordinary cases and will use the
known results in both regular and non-regular cases. In ordinary cases, modularity lifting theorems
were proved for ordinary families of Galois representations that will specialize to companion
points with possibly non-regular weights. In our finite slope/trianguline cases, for a non-regular
point z as in Theorem the naive strategy is to find a sequence of points % on Y (U?, p) with
regular Hodge-Tate weights such that z = hﬂz 2 and certain companion points (z*) of z*, which
will exist on Y (UP, p) using [8], satisfy that (z*)’ converge to a point 2’ on Y (UP, 5) and that z’
is a companion point of x of type (b).

The actual proof is Galois-theoretical. Using patching methods [12] and the patched eigen-
variety [7]], we can reduce the task to find those nearby regular z° to a similar problem on the
trianguline variety in [7]], the local Galois-theoretical eigenvariety. Those 2* = (p?, ") (now p*
are representations of local Galois groups) are found by studying some “crystalline/de Rham” loci
on the moduli space of trianguline (¢, I")-modules in the proof of [7, Thm. 2.6] and p’ will be the
Galois representations corresponding to certain étale trianguline (¢, I")-modules of parameter &°
(the étaleness will be achieved by the results of Hellmann in [21]]). The key example is the case
n=2.

Remark 1.2. Our proof for the existence of companion points of type (b) will not use directly the
theory of local models of the trianguline variety in [8] and [33]]. However, it is the existence of all
companion points of type (a) in [33]], which used the local models, that allows us to keep working
in the smooth locus of the trianguline variety consisting of points (p, d) where p is trianguline of
parameter 9.

Remark 1.3. As a corollary of Theorem [I.1| we can determine all the companion constituents
(certain locally analytic representations of ], . S, GL,,(F,")) in the Hecke-isotypic part of the
completed cohomology of GG associated with generic crystalline Galois representations in Breuil’s
locally analytic socle conjecture (Corollary [5.4). Since there are no locally algebraic constituents
in the non-regular cases, the existence of all of these companion constituents could be a replace-
ment in the automorphic side to compare with de Rhamness of the Galois side in the p-adic Lang-
lands correspondence in this particular non-regular situation.

Remark 1.4. For non-regular weights, the existence of all companion points will not lead directly
to a classicality result of Hecke eigensystems in contrast with [[L1] since classical automorphic
representations for definite unitary groups will have regular weights. The results of this paper
might be able to be adapted for Hilbert modular forms and have applications in classicality of
p-adic Hilbert modular forms with non-regular and possibly non-parallel weights.

The paper is organized as follows. In §2|and we collect some (presumedly known) results
on (i, I')-modules over the Robba rings. In we find the companion points on the trianguline
variety. In §5] we apply the local results in §4]to the global settings and prove the main theorem.

1.1. Notation. We will use the notation in [33], §1.7]. Let K be a finite extension of Q, and L/Q,
be a large enough coefficient field such that ¥ := {7 : K — L} has size [K : Q,]. Let C be the
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completion of an algebraic closure of K. We have the Robba ring R, i of K over L defined in
[23, Def. 6.2.1]. Lett € Rp, k denote Fontaine’s 27i and ¢ = uHTeE t, for some u € Rz K

(see [23, Not. 6.2.7] for details). For k = (k;)rex € Z*, write tX = HTGE I KX — LX
is a continuous character, let Ry, i () be the associated rank one (¢, ' )-modules over Ry, i in
[23, Cons. 6.2.4] where I'y = Gal(K (goo)/K). Then thLJ( = RLVK(zk) where z¥ denotes
the character z — [] .5, 7(2)*". If « € L*, then denote by unr(a) the unramified character of
K sending a uniformizer of K to a. Let 77, be the rigid space over L parametrizing continuous
characters of K* and 7o C 77 be the complement of the subset of characters ¢ such that § or
€61 is algebraic. Here ¢ is the character Norm /0, Normpg g, |, of K. We can define 7-part

wt,(8) of the weight wt () of 6 (see [33} §1.7.2]). The cyclotomic character of G := Gal(K/K)
has Hodge-Tate weights one. We fix an integer n > 2.
2. COHOMOLOGY OF (¢, Ik )-MODULES

We collect some results of the cohomology of (¢, ')-modules (of character type). We fix
d : K* — L* to be a continuous character. Recall if D is a (¢, ' )-module over Ry, g, then

Hn (DY) =l HE_ (£7"D),i = 0,1,2 (8 (G.11).

Lemma 2.1. If§ € To, thendimy H, . (R, k(6)) = 0fori = 0,2and dimp, SDW{(RLJ((é)) =
(K Qpl.

Proof. |23, Prop. 6.2.8]. ]

Recall in [8, §3.3] we have a functor Wyg (resp. WJR) sending a (¢, I' k' )-module over RLK[%]
(resp. Ry k) to an L ®q, Bqr-representations (resp. L ®q, BgR—representation) of Gk

Lemma 2.2. If 6 € Ty and is locally algebraic, then

HY L (Rek(O)5]) 5 H'(Goc, War(Ru e (9)] 1)
Proof. (I8, Lem. 3.4.2] O
Proposition 2.3. Fork € Zgo,i =0,1,

dimy, Hi(t %Ry (0)/R1.x(8) = {r € S| ky > 1, wt,(8) € {1, , ks }}].

Proof. This follows from [24, Appendix A] and [26, Lem. 2.16] (and some other well-known
results: [25, Thm.4.7, Cor. 4.8] and the comparison in [26, Prop. 2.2], or a generalized version
[27, Thm. 5.11]). O

Corollary 2.4. Fork € Z>0, and 6 € To, then
dimy, Ker ( L (Rix(8) = HL, (¢ -kRL,K(a)))

— dimy, Coker (H¢ Rk (8) = HL ., (1 *kRL,K(é))>
{7 € X | hr = 1, wto(8) € {1, ko .
Corollary 2.5. If § € Ty is locally algebraic and wt,(5) < O for all T € %, then the natural maps
Rk (8) — t %R k(8) induce isomorphisms HSO v Rpi(6) = pr - (t %Ry k() for all
i=0,1,2,k € 2%,
If k € 7%, write k! € Z* where k& =k,ifk; > 1and k:g- = 0 otherwise.

Proposition 2.6. Assume that § € Ty is locally algebmlc with weights k € 7. Then the image
of an element x € H, va (R, (6))inH), ., (Ry, k(6)[3]) is 0 if and only if

z € Ker ( HY  (Rix(8) — HL (%R, K(a))) .

Proof We have wt, (52~%) < 0 for all 7 € ¥. Thus by Corollary. W (o KRk (8))
ng'YK(RLK(&)[ D U
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3. A CRYSTALLINE CRITERION

We need some criterion to guarantee that the points on the trianguline variety we will find in
the next section are crystalline. For the definition of de Rham or crystalline (¢, I' k' )-modules, see
[22, Def. 2.5]. We say a trianguline (¢, I )-module of parameter § = (61, -+ ,dy) is generic
if 52-5;1 € To foralli # j (or 6 € 7" in the notation of [33| §3.2], remark that 7;* # (79)"!).
Recall that a locally algebraic character ¢ : K* — L* is crystalline (or semi-stable) if and only if
the smooth part gy, 1s unramified (see [23, Exam. 6.2.6]).

Lemma 3.1. If D is a generic trianguline (¢, i )-module over Ry, i of parameter 0 such that
all &; are crystalline, then D is a crystalline (p, I i )-module if and only if D is de Rham.

Proof. This follows from the proof of [22, Cor. 2.7(i)]. Assume D is de Rham. As D is a succes-
sive extension of crystalline (¢, ' )-modules, D is semi-stable (by [2]], see also the arguments in
[1, §6.1]). By the generic assumption, the monodromy must be trivial. Hence D is crystalline. [J

Lemma 3.2. Let D be a trianguline (o, 1 )-module over Ry, i of rank n with the trianguline
filtration File D such that Fil; D /Fil;_1D ~ Ry, (6;) fori =1,--- ,n. Fixig € {1,--- ,n—1}
and let Dy = Fil;,D and Dy = D/Fil;,D. Assume that § is locally algebraic and let X =
(Ari)rexi=1, n = Wt(d) € (Z*)™. Assume that for every T € %, Ari < Arjifi > 19 > jand
that both Dy and D1 are de Rham, then D is de Rham.

Proof. This is a generalization of [22, Prop. 2.6]. We need to prove that dim; War(D)9% =
n[K : Qp]. For 7 € 3, let k- = max;>i,Ar;. Then dimp, W;R(t*kDo)gK = 0 as the Hodge-Tate
weights of XDy are positive and t "X Dy is de Rham. We have an exact sequence

0 = Wik (t7¥D)9% — Wik (t7D1)%% — H'(Gk. Wiz (t7*Dy)).

The Hodge-Tate weights of t "X Dg are > 1, hence H' (G, WJR(t_kDO)) = 0 by [27, Cor. 5.6]
(we have that H! (G, C(i)) = Ofori # 0by [17, Prop. 2.15(ii)]). We get dimy, Wi, (t ¥D)9% =
dimy, Wi (t7%D1)9% = (n —io)[K : Q) since ¢t "%D; is de Rham with non-positive Hodge-
Tate weights. As Dy is de Rham, dimy, Wy (Dg)9% = ig[K : Qp]. Since Wi (t™Dp)[1] N
Wi (t7%D) = Wi (t7%Dy), we have War(Do)9% N Wi (t kD)%% = Wi (t%Dy)9% =
{0}. Then Wi (t7%D)9% and War(Do)9% span an n[K : Qp)-dimensional L-subspace in
War (D)9%. O

The above lemma will be used in the following form later.

Proposition 3.3. Assume that D is a trianguline (p, Ik )-module of rank n over Ry, k with the
trianguline filtration FileD such that Fil;D/Fil;_ 1D ~ Ry k(6;) fori = 1,--- ,n. Fixig €
{1,-~- , N — 1} and let DO = Fﬂio—lDyDl = Fﬂio—i—lD/DO and Dy = D/Fllm_;,_lD Let
A = wt(d) and assume that ¢ is locally algebraic. Assume that for every T € ¥, Arj > Arjq1 if
i # g, )\Tﬂ' > )\7—71'0, AT,io+1 if i < i, and )\7—71' < )‘T,’Lb? )\7—71'0_;,_1 ifi > 19+ 1. If Dy is de Rham,
then D is de Rham.

4. CRITICAL POINTS HUNTING

Let7 : Gx — GLy (k) be a continuous representation. We firstly recall some constructions
around the trianguline variety Xy,i(7) in [7, §2.2]. In the first parts of this section, we will only
need the Zariski open dense subset Ui (T) C X (7).

4.1. The trianguline variety. Let 7., be the Zariski open subset of 7;" consisting of characters

0 = (0§)i=1,... » such that 52-5;1 £ 27K ezKfori # jand k € Zgo- There are rigid spaces
SE (7) — Sy over 7;gg in the proof of [7, Thm. 2.6] (and in [22, §2.2]) which will be used later,
and we recall below.

The space S,, represents the functor sending a reduced rigid space X over L to the isomor-
phic classes of quadruples (Dx,FileDx,vx,0y) where Dx is a (¢,'x)-module of rank n
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over Rx x where Rx i denotes the Robba ring of K over X, Fil,Dy is a filtration of sub-
(¢, I'x)-modules of Dx which are locally direct summands as R x, x-modules, §x € 7o (X)
and vx : Fil;Dx /Fil;_1Dx ~ Rx k(6;) (we omit the subscripts of the spaces for the univer-
sal characters to simplify the notation). There are obvious morphisms S,, — S,—1 xXp Tp, —
ﬁgg_ L, T C T/ Let U C S,-1 xr Tr be the preimage of ’Ezg which is Zariski open
in S,—1 X T and let Dy be the (¢, I")-modules over U pulled back from the universal one
on S,—1. Then S, ~ Spec®(Sym*® (Ea:tglo e (Ru.k(6n), Dy)Y)) is a geometric vector bundle
over U where £xtl, . (Ru,kx(6n), Du) ~ HJ, ’YK(DU((S 1)) is a locally free sheaf on U of rank
(n — 1)[K : Q] ([22} Prop. 2.3]) and the notion Spec®" is taken from [13} Thm. 2.2.5]. It follows
from induction that the map S,, — 7;Zg C T/ is smooth.

Let S2d™ S, be the open subset (as adic spaces) of the admissible locus, which comes
from a rigid space, and let Sypadm — S2dm be the GL,,-torsor trivializing the universal Ga-
lois representation over S4™, Let SE admt - ghadm e the admissible open subset where

the universal framed representation G — GL, (F(SE adm (’)Sm aam )) factors through Gx —
GLy, (T (S5 O;D,adm)) We denote by S2(7) the admissible open subset of S ™ where

the reduction Gx — GL, (I'(Sy ™, (9*,3 wam i /O SDhadm +)) coincides with 7 (see also the dis-

cussion before [20, Prop. 8.17]). The map « : SJ (7 ) —> Sp — T, is also smooth.
Let Ry (over Op) be the framed deformation ring of 7 and let X := Spf(Rr)"® be the rigid
generic fiber (we follow the notation in [8]] and [33]] rather than [[7]). We have a subset

Uui(7) := { (r,8) € X5 x Tjoy | r is trianguline of a parameter § }

of X7 x T, (see [[7, §2.2]). The image of SH(F) — X7 x T/ is equal to Uy,i(7) and the trianguline
variety Xm( ) is the Zariski closure of Uyig(T) in X7 x 7'" with the reduced induced structure.
The open subset Uy,i(7) of X,i(7) is smooth and the map 77 : SS(7) — Upi(F) C Xni(7) is
smooth [7, Thm. 2.6].

4.2. Some “de Rham” locus. We will define some subspace S” (i kJ)(?) C S-(7) where the

criteria in the last section will apply for certain points on it.

We fix datum 4o € {1,--- ,n — 1}, asubset J C X and k; = (k,),cs € ZL,. We allow J to
be () or 3. Let T (i x,) be the subset of characters § € 7.¢, such that wt- (51051 ﬁrl) = k, for all
7 € J and 510510+1 € 76. Let t be the base change to L of the Q,-Lie algebra of (K*)" and view

its dual t* as the affine space of weights and we have a weight map wt : 7" — t*. Let tz*io k) be
the subspace of points (A ;)rex i=1,... »n sSuch that Ar;; — Ay 41 = kr forall 7 € J.

Lemma 4.1. The rigid space T" lS smooth reduced equidimensional of dimension [K : Qp|n—
|J| and is étale over o k)"

Proof. This follows from [15, Prop. 6.1.13]. O

Consider the universal (¢, ')-modules Dx and FileDx over X = S, X7 72?0 k,) Of
SH(7) X T(Z‘O k) bulled back from S,,. The extension

0— RX,K((SX,i()) — Filio_:,_le/FﬂiO_lDX — RX,K(éX,iO+1) — 0
together with the trivialization vx defines a section sx in

Extl o (Rx K (0x,i01+1) Rx.K (6x,60)) = Hp o (Rx K (6x,i06x 5 11))-

By the main result of [23]], both Hé i (RX,K(‘;%oézo}H)) and Hé - (t_kJRXK(cSméZOH)) are

coherent sheaves on X. We define the subspace Sy, (;, k) Or Sn (o, kJ)( 7) to be the vanishing
locuson X = S, XTn T

o) OF SH(7) XTn 72” k) Of the image of s x under the natural map

HY (R k(81000 41)) = H L (879 Rox i (830650 51)-

PVK PYK 207ig+1
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The vanishing loci are Zariski closed subspaces as H, éﬁK (t Ry, K (0:y0;, }H)) is locally free
(by Lemma .2 below).

Then the image of SE (io kJ)(F) in Uy;i(7) consists of z = (r,0) such that Wt7(5io(5i_0 IH) =k,

for 7 € J, 05,9, }H € 7o and the extension (the condition will be independent of the trivialization

of Riy(z),x ()
0— Rk(a}),K(dio) — Fili0+1Drig(T)/Fil@'olerjg(T) — Rk(m),K(5i0+1) — 0

corresponds to an element in H} (R (z),x (60 —1 ) which lies in the kernel of

PVYK i0+1
HY o (R, i (0io 03 41)) = Hi o (875 Ry 1 (830070 41))-

Remark that the image of SE(io k) (7) in Uyyi(7) is a locus where Fil; 1 Drig (1) /Filiy—1 Dyig (1)
is de Rham if &;, and d;,41 are locally algebraic (cf. Lemma[2.2). Using this property and Propo-
sition [3.3| we will pick out certain crystalline points with regular Hodge-Tate weights in the image
of SE(Z.O,kJ) (7) in Uyyi(T) (Proposition. The following lemmas (particularly Lemma show

)

that the geometry of SE(iO k) (7) is good and will be important for the purpose.

Lemma 4.2. Let X be a reduced rigid space over L and 0x : K* — I'(X, Ox)™ be a continuous
character. Assume that for any x € X, we have 6, € Ty and wt,(0,) = k. forall T € J. Then

the coherent sheaves H,, . (Rx,k(dx)), H&,WK (t % Rx k(6x)), as well as

KeI‘(HL,yK ('R,XJ(((S)()) — H&%’YK (tikJ'RXJ(((Sx)))

and

Coker(H;ﬁK (RX,K((;X)) — HQ}’KYK (tik‘]'R,XJ(((Sx)))

are finite projective over X of rank |X|, |X|, |J|, |J| respectively and their formation commutes
with arbitrary base change.

Proof. We write Ker(dx) or Coker(dx) for the kernel or the cokernel of the map

H.. (Rxk(0x)) = H, ., (t7Rx k(0x))

for simplicity.

For any x € X, dimy(py H} ., (Ry(z), i (62)) = dimyy Hin (t ™ Ry .x(82)) = |Z| by
Lemma and dimy,,) Ker(0,) = dimy,,) Coker(d,) = |J| by Corollary [2.4{ and our assump-
tions on d,,. The fact that H . (Ry(z),x (0z)) and H},  (t 7%/ Ry, k (62)) are locally free and
commute with base change of the form Sp(k(z)) — X for z € X follows from [22} Prop. 2.3].
Thus for any x € X,

Coker(dx) ®o, k(z)
ZCOker(Hiany (RX,K((SX)) Koy k(x) — Hé:’YK (t_kJRXjK((gx)) Koy k‘(l‘))
~Coker(H} . (R, (02)) = Hp . (67 Ry 5 (62)))
~Coker(d).

Thus Coker(dx) has constant rank, hence is projective by [23, Lem. 2.1.8 (1)], and commutes
with base change of the form Sp(k(z)) — X forz € X.

Let Im(Jdx ) be the image of the map H}Dm{ (Rx k(6x)) — Hém{ (t % Rx k(6x)). Then we
have dimy,(,) Im(d,) = |X[ — |J| for any = € X. By the exact sequence

0— Im(éx) — Hi7,yK(t7kJRX7K((5x)) — Coker(éx) —0

and Tor}QX (k(z), Coker(dx)) = 0, we get

0 — Im(6x) ®oy k(z) = HY ., (t75 Ry x(02)) — Coker(dg) — 0
forany x € X. Hence Im(dx) ®o k(x) ~ Im(J,) forany x € X and Im(dx) is finite projective

of rank |X| — |J|. Repeat the argument using the exact sequence

0— Ker(éx) — H&,’,},K (RX,L((SX)) — Im(5x) — 0
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and that Toréx (k(z),Im(0x)) = 0, we see Ker(dx) ®p,, k(z) ~ Ker(d;) and Ker(dx) is finite
projective of rank |.J|.

The statement for general base changes, which we will not essentially need, follows form [23,
Lem. 4.1.5, Thm. 4.4.3 (2)] and the locally-freeness of those sheaves over the base X. ]

Lemma 4.3. The morphism r : S~ (oK) () = T (i ) is smooth.

Proof. The diagram

85(1.071{”(?) - Sna(ioka)

¢ \

SE(?) — S,

is Cartesian. Hence the map SE(Z.O kJ)(F) — Sy (i,k,) 18 smooth. The map SY (i, kJ)( T) —

T?o,kJ) factors through S, (;, k) — ﬁ?o,kJ)‘ Therefore, we only need to prove that S (ioky) —

T(?O’k‘]) is smooth. In ~, we have maps S; — S;—1 X, Tr.. We can define S; 11 (;, k) Teplacing

: n _Tn ) io+1 : :
n by ig+ 1. We have Tz‘o,kJ = Treg x7.£0+1 7&0’1{”. The section SSuxTp Tl 1) 18 the pullback of
; : n . ) 0+1
the section s 5io+1XTio+1ﬁ§%+k1J) via Sy, X7n 7zi07k‘]) — Sip+1 XTZOH 7'1Z k) since the definition
L

of sx only involves Fil;, 11 Dx and 6;,, d;,+1. Thus the diagram

Sn,(io ky) — Sio-&-l,(io k)

J \

Sn _— Sio-i-l

is Cartesian. As each S; — S;_1 X, 7, is smooth (as a geometric vector bundle over a Zariski
open subset of the image), we see so is, by base change, S (j,x,) — Si—1,(i0k,) XL TL —
7@071” C TLZO K,) XL Ty, for i > ig + 2 if the result is true for ig + 1. Thus, we reduce to the case
whenn = 19 + 1

We consider the map

Sio+1,(i0ky) — Sig+1 X Tiot 7_10 ok~ (Sio X2 T) X ot 7-1

(0, kJ
Since the map S;, — 7'1'0 is smooth, so is (S;, X1, T1) % ot 7'1 kJ) 7,10+1 Write V' for

Sio X1 Tp) X i+l 7'1 . We only need to prove that S; 1 ¢; k) isa geometrlc vector bundle
0 o+ 7( 05 J)
over V' which w111 1mp1y all we need.

Recall that Sig+1 X i+1 7’;Ok ~ Spec®(Sym®(HL . (Fil;, Dy (61 ,))Y)) where Fil;, Dy,

t0+1
is the universal one pulled back from S;, and §;,; is the character pulled back from 7'(20; ]1).
Consider the kernel of the following composite of morphisms of coherent sheaves on V'

@1 H}_, (Fil,Dy(s; L)) = H, . (Ry, K(ézoézoil)) — H)_ (t IRy K (6i003. 1))

‘P'YK

where Ry i (0;,) = Filj, Dy /Fil;,—1Dy. We denote the kernel (resp. cokernel) of the above
composite morphism by Ker(Fil;, Dy (6; +1)) (resp. Coker(Fil;, Dy (5; +1)))
We claim that Ker(Fil;, Dy (6L ,)) is locally free of rank (ig — 1)|%| + |.J| and

10+1
Ker(FﬂioDV(ém}H)) Koy k‘(:ﬂ) = Ker(FﬂiOD (51‘ zlo-l—l))

for any x € V. If iy = 1, this follows from Lemma- Now we assume i9 — 1 > 1. The

sheaves Hém{ (FﬂioDV(fsm_lH)) Hé - (RMK(51062_0+1)) and H; i (t_kJRwK(5,O5ZO+1)) are

locally free of ranks ig|X|, |X| and |X| respectively and commute with base change. The morphism

H}_ . (Fili,Dy(5;. ) = Hj .. (Rv,k (6007, 11))



8 ZHIXTANG WU

Filio,lDz(éfl )) = 0 (see [22, Prop. 2.3]). Hence

is surjective since forany x € V, H, 3 ot

YK (

Coker(FiliODV(cSi;il)) = Coker(H (RV,K(@O@—OL)) — H, . (t*kJRV,K(5i05;011))).

By Lemma we get Coker(Fil;, Dy (65, IH)) is locally free of rank |.J| and for any point z € V/,

Coker(Fil;, Dy (6;, }rl)) ®o, k(z) ~ Coker(Fil; D, (6;;0 +1))- Repeat the last step of the proof
of Lemmaf.2] we get the desired claim.
The injection Ker(Fil;, Dy (d;, —1H)) — H} _ (Filj, Dy (0;, }H)) of projective coherent sheaves
induces a surjection
H . (FiliyDy (6; % 1))" — Ker(Fily, Dy (6; 1))
which by [13] Thm. 2.2.5] induces a closed embedding

Spec® (Sym® (Ker(Fil;, Dy (5, 1))")) <= Sig1 % o1 77;3;{]).

The left-hand side is a geometric vector bundle over V' by the previous discussion, and we remain
to prove that Spec™ (Sym*® (Ker(Fil;, Dy (;, }rl))v)) coincides with S; 41 (i, k). The statement
is local and trivial. We write a proof below.

We may take an affinoid open W = Sp(A) C V and assume that the sheaves in are
free over W. Then since all the modules are projective, we may take a basis eq, - - , €;x| of

H in (Fili, Dw (65, frl)) and assume that the surjection

Hy o (Filiy Dy (67 11)) = Hy o (Rwiic (810031 1)
corresponds to projection to the subspace (e1,- -+ ,e|x)) (equivalently choose a split of the sur-
jection). We assume that €, - - - ,eim is a basis of H} (tikJRW,K((SiO(Si_Oil))- As the cok-

ernel and the kernel of the map Hém( (RWK(&-O@;L)) — Hérm (t_kJRW,K(éioéi;il)) are

locally free, we may, after possibly shrinking W, assume that the morphism is given by sending
el J|+1;° " €y to 6\,J|+1’ . ’G\IEI and sending ey, --- , € to 0. Letey,- - ,eivom be the dual

basis. Then

Specan(Sym'(H;ﬁK(FiliODV(di_oil))V)) resp. Specan(Sym'(Ker(FﬂioDv((51.;11))\/))

are covered by
Wi = Sp(A(p"ey, -+ pVej ) resp. Sp(A(YeY, - pNe PN ey N e )
where NV € N. The tautological section sy, of the sheaf
H‘;a’YK (RWN,K(‘Sio(Si_Oiﬁ) =Owye1 @@ OWN6|Z\

is given by ef'e1 + - -+ + €5 €. Thus the image of sy in

1 —k —1
Hy (7 Rwy ik (0ig0;,11)) = Owye) @@ OWNG\,EI
is given by el\fllJrle"J‘Jrl +- 4 e‘vmeizl. Hence the vanishing locus is cut out by el\{7|+1 ==
e‘vm = 0 and coincides with Sp(A(pNey,--- ,pNe|vJ|,pNe|vE|+1, e ,pNeZ.V()m)). O

4.3. Nearby critical crystalline points. Now we fix v = (1,6) € Uwi(7)(L) C (X7 x T/")(L).
We assume that r is crystalline and § = 2*
(Ari)resizt, n € (Z")¥ and ¢ € (L*)". Assume furthermore that goigpj_l ¢ {1,q} for all
i # j where ¢ is the cardinal of the residue field of O . This means that 7 is generic in the sense
of [33] §4.1] or the beginning of and 0 € 7.

We continue to fix i9g € {1,---,n —1}. Let J := {7 € ¥ | Ai, > Arip+1 + 1}
and let k; = (kr)res = (Mrip — Arjig+1)res. We have a filtration Filg Dyig(r) such that
Fil; Dyig (1) /Fil;—1 Dyig (1) =~ R,k (6;). Since r is de Rham, so are Dyig(r) and the subquotient
Filjy41Drig(r)/Filiy—1Drig(r). The extension

0— RL,K(éio) — Filio+1Drig(T)/Fﬂz‘o_lDrig(T) — RL,K(5i0+1) =0

unr(p) = (2Munr(p;))i=1,... » for some A\ =
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defines an element in Hém{ (RLK(@O@;L)) (up to L) which lies in the kernel of

Hp e (RLK (Bia0 41

by Lemma [2.2] Proposition[2.6] [8l Lem. 3.3.7, Lemma 3.4.2], the isomorphism

) = H) . (7R k(60674 1))

Hl(gK7 L ®Qp BdR) ~ Ethl%epL@)Q BdR(gK)(L ®@p Bar, L ®Qp BdR)
p

and the following lemma.

Lemma 4.4. Let W be an L ®q, Bar-representation of G which is an extension 0 — L ®q,
Bar = W — L ®q, Bar — 0 as representations of Gi. Then W is trivial (i.e. W ~ (L ®Q,
Bqr)?) if and only if the extension splits.

Proof. If the extension splits, then W is trivial. Conversely, if W is trivial, then dimp, W9k =
2[K : Q] and we have an exact sequence of L ®g, K-modules 0 — L ®q, K — W9k —
L ®g, K — 0. The extension splits and we may choose a section L ®q, K — WY9% which
induces a section L ®q, Bqr — W of L ®q, Bqr-representations. ]

Thus 2 lies in the image of S¥ (i0 k) (7). Recall the following diagram.

SE,(iO,kJ)(?) C S
o

z € Ugi(T) . Tioes) € 7L

To state our main result of this section, we make some preparations in rigid geometry.

Definition 4.5. Let A and B be two subsets of a rigid space X over L. Then we say that A
quasi-accumulates at B if for every point b € B and every affinoid open neighbourhood Y of b,
ANY # () (compare with [7, Def. 2.2]).

Lemma 4.6. If A and B are two subsets of a rigid space X, then A quasi-accumulates at B if and
only if for any b € B and any affinoid open neighbourhood 'Y of b, b lies in the Zariski closure of
Y NAinY. Inparticular, if A quasi-accumulates at B, then B is contained in the Zariski closure
of Ain X.

Proof. We prove by contradiction. Assume that A quasi-accumulates at B and there exists an
affinoid neighbourhood Y of b € B such that b is not in the Zariski closure Y N A in Y. Since
Zariski open subsets in an affinoid are admissible open (|3, Cor. 5.1.9]), there exists an affinoid
neighbourhood Y/ C Y \ Y N A of b. Then Y’ N A = (), this contradicts the assumption. O

Lemma 4.7. Let Y — X be a closed immersion of rigid analytic spaces over L. Let Z be a
subset of Y and y € Y be a point. Then Z quasi-accumulates at y in X if and only if Z quasi-
accumulates atyin 'Y .

Proof. The problem is local and we may assume X = Sp(A),Y = Sp(B) and B = A/I for an
ideal I. Assume that Z quasi-accumulates at y in X. We only need to prove that for any affinoid
neighbourhood Y of 4 in Y, there exists an affinoid neighbourhood Y” C Y” such that Y has
the form X’ N'Y for some affinoid neighbourhood X’ of y in X. As affinoid subdomains are
open in the canonical topology ([3, Prop. 3.3.19]) and Weierstrass domains form a basis of the
canonical topology ([3, Lem. 3.3.8]), we may assume that Y has the form {x € Y | | f;(z)| < 1}
for f1,---, fm € A/I. We may choose lifts ]71, ,fm for f1,---, fm in A. Then {z € X |
[fi(x)| <1}NY ={z e Y |[fi(z)] <1}. O

We say a character § = (61,---,0,) € T/ of (K*)" is crystalline if for any 1 < ¢ < n,
8i ]O;{: ¥ for some k € Z>.
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Lemma 4.8. Let C be a positive integer. Then the set of crystalline characters § € T such that,
if we write A = Wt(é), )\7-71' — >\T,i+l > Cifi # ig, \j — )‘io > O\ — )‘io-i-l > Cifi < i,
N — )‘io < =C A\ — )‘io-i-l <=Cifi>1ig+1, >\T,i0 = )\7-71'04_1 ifteJand )\T,io-‘rl — )\7-71'0 > C
quasi-accumulates at the trivial character in 7"

Proof. Let q = p[K‘):QP}, where K is the maximal unramified subfield of K, and d = |X|. Take
a uniformizer wx of K. We prove that for any character § € 77, such that §(wg) = 1, the
set {5”N(q_1), N € N} quasi-accumulates at the trivial character. For some m large, we have
O = Zg x u(Ok) x Z/(q — 1) where Zg/ exp(w#Of) is finite and ;(Of) denotes the p-
power roots of unity in O (see 28, Prop. 11.5.7]). We only need to consider Zg = Zpe1 @
-+ - @ Zpey, since the characters &7"(@=1) are trivial on the torsion subgroups of O and w” when
N is large. The space @ = U? which parametrizes characters of ZZ is the open polydisk in d
variables 77, - - - , Ty by sending a character § to (6(e1) — 1,--- ,8(eq) — 1). Then 67" is sent to
(6(e1)?" —1,--,8(eq)?" — 1). For any z € C such that |z — 1], < 1, where | — |, denotes
the standard valuation, limy_o |27 — lp = Bmy_soo | Do <icpn (piv)(x —1)¥|, = 0. Hence
for any e > 0 and N large enough, we have (5(e1)?" —1,---,8(eq)?" — 1) € B(0,€)? := {x €
U4 | |Th(z)|, < €, |Tu(z)|p, < €}. Any affinoid neighbourhood of 0 in B(0, %)d contains a
Weierstrass subdomain of the form {x € B(0, %)d | fi(@)]p < 1, |fm(2z)|p < 1} for some
fi, s fm € L{p~ 1, - -+ ,p~y) by [Bl Lem. 3.3.8, Prop. 3.3.19]. Since |f;(0)|, < 1, there
exists € > 0 satisfying that for all (x1,--- ,24) € C? such that lp~tail, < eforalli=1,---,d,
|fi(z1, -+ a)|p < 1. Hence B(0,¢)? C {z € B(0, ;)¢ | [fi(x)]p < 1, [fm(2)|p < 1}.

Therefore, we have {5PN(q_1) , N € N} quasi-accumulates at the trivial character.

We write z, for the character that sends z € Oj to 7(z) and wg to 1. For ¢ # ig,ip + 1,
let §; = [[,ex 27" Let 6;y = [[, )27 [Tr¢s 70 and 6y 41 =[],y 27 [Tr¢s %, Let
0 = (01,--+,0p). Then ¢, as well as its powers, is crystalline. The set {épN(q’l) | N € N}
quasi-accumulates at the trivial character by a similar proof as above and épN(q_l) satisfies the
requirements for the weights if NV is large. U

Finally we can prove the main local results. Write zX7 for the character K* — L* : z —
ey ().
Proposition 4.9. Let X be an affinoid open neighbourhood of x in Uy (T).

(1) There exists a subset Z C X that quasi-accumulates at x and such that for every z =
(ry,0,) € Z,
. . . D
(a) z lies in the image OfSn,(io,kJ)
(b) 6, € Ty is crystalline, and
(c) if we write \, for wt(3,), then for every T € £, A, 7; > A riv1 if 1 # G0, Az ri
)\Z,T,i07AZ,T,i0+1 if i < 1, )\Z,T,i < )\Z,T,io))\z,T,io—i-l ifi > 19+ 1, and >\z,7',7,'0
A27T7i0+1 l:fT ¢ J'
(2) Every point in Z is generic crystalline and regular (i.e. X\, ;; # N, rj foralli # j, 7 €
).
(3) Let ¢ be the automorphism of T;* sending §' = (61, -+ ,0,,) to

/ / / k; s/ —kj s/ /
( 1, 75’i0—1’6i0+1z ’(siOZ 761‘0"!‘27“. 75,"/)

(7) c S,

n

NV

Use also the notation ¢ to denote the automorphism of Xz xT;* : (r,8') — (r,((0")). Then
((Z) is a subset of X1i(T) and quasi-accumulates at ((x) in X7 < T;*. As a consequence,
C(x) lies in X4,i(T) and ((Z) quasi-accumulates at {(x) in Xy (7).

Proof. (1) By the definition of quasi-accumulation, we only need to verify that there exists one
point z € X for an arbitrary affinoid open neighbourhood X C Uy;(7) satisfying the condition

(a), (b) and (c). Let 7. 1(X) be the preimage of X in SE (io kJ)(F). Then 7~ 1(X ) is admissible
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open. We only need to prove that there exists a point 2’ € 7' (X) such that IQ( "N =uw(mr (7)) €

7@0 k) satisfies the conditions in (b) and (¢). As & : S, ok ) ( ) = T ) is smooth by Lemma

| the image # (7 ' (X)), which contains §, contains an admissible open subset of ’T” k) that
contains d by [3, Cor. 9.4.2]. Then the result follows from that the set of points §’ € T that
satisfy (b) and (c) quasi-accumulates at J by Lemma(smce 0€ Ty and TP — T é' t—) 66
is an isomorphism).

(2) Assume z = (r,,d,) € Z as in (1). By (c), the 7-weights of §, are pairwise different, thus
the Sen weights of r, are regular. Since (r,, J,) lies in the image of Sn (o k )(r), the extension

0 = R(z),k (02,i) = Filig4+1Drig(r2) /Filig—1 Drig(72) = R(z), i (0z,i9+1) — 0
corresponds to an element (up to L) in the kernel of

va (Ri(2), (6zvi05;i10+1)) — Hé YK (t_kJRk(Z)ﬁK(‘;Z i00s, zlo+1))
and in particular, in the kernel of
1
)8
Since 6 j,, 0-,i,+1 are both locally algebraic, we get that FiliOHDrig(rz)/Filio_lDrig(rz)[%] isa
direct sum of de Rham (¢, I" )-modules over Rk(z)’K[%] by [8, Lem. 3.3.7]. Hence the (¢, 'k )-
module Fily, 11 Dyig(7)/Filij,—1Diig(r2) over Ry, i is de Rham. By Proposition and the
condition of weights in (c), r, is de Rham. By (b) and Lemma 3.1} 7, is generic crystalline.

(3) Let z = (p,6,) € Z C Uwi(F). Then §, = z)‘zunr( _) for a refinement ¢ =
(@21, ,9zn) Where X, is as in (c) (we abuse the notation z for a point and the character).
Let ¢/ be the refinement such that ¢ ; = ¢.; if i # do,i0 + 1 and ¢ ; = @241, 9% 1041 =
©ziy- Let )\‘Ziom be the weight such that \dom  — Ao if 4 # dg,70 + L orif 7 € J and let

2,7t

HY e (R i (020064 11)) = Hp e (R, i (02,0062 0 4

/\SOTH;O = Ao rio+1s )\‘ziffgo 41 = g if T ¢ J. Then /\dom is dominant and differs from A, by

permutations. It is easy to verify that 2= " unr(y ) == A<unr(p _))- By [8 Thm. 4.2.3], all
the companion points of z exist on Xy,i(7). In particular the dominant point (7, A unr(y’))
corresponding to the refinement ¢’ is on Xi(7). Let z vary, we see ((Z) C Xui(T). Since Z
quasi-accumulates at = in Uy (F) C X4,i(T), Z quasi-accumulates at = in X7 X T by Lemma
Since  is an automorphism, {(Z) quasi-accumulates at {(z) in X7 x T;*. As ((Z) C X:i(T), we
see ((Z) quasi-accumulates at {(z) € X¢,i(7) by Lemmaf4.6] O

5. COMPANION POINTS ON THE EIGENVARIETY

We now prove the existence of all companion points for generic crystalline points on the eigen-
variety. We recall the definition of the eigenvariety for definite unitary groups in [8, §5.1] or [6}

§3.1].

5.1. The eigenvariety. Let F' be a quadratic imaginary extension of a totally real field F'*. Let
S, be the set of places of F'* that divide p. We assume that each v € S, splits in F" and for every
v € Sp, we choose a place v of F' above v. Let G be a definite unitary group of rank n > 2 over
F* that is split over F so that Gy = [[,eg, Go = G(F' ®g Q) ~ [[,e5, GLn(F) (we fix
an isomorphism G X p+ F' >~ GL,,/p). Let B, = [],¢ s, B, be the subgroup of upper triangular
matrices in G, and let T, = ], s, T, C B, be the diagonal torus. Let U? = vap U, be a
sufficiently small (see [6l (3.9)]) open compact subgroup of G(A%LY). Write S(UP,L) = {f:
G(F)\G(A%,)/UP — L, continuous}, where L/Q, is a large enough finite extension with the
residue field k1. Let G, act by right translations on S (UP, L). Let S be a finite set of places of F*
that split in F* which contains all split places v ¢ .S, such that U, is not maximal and also contains
Sp. The space S (UP, L) is also endowed with some usual action of (away from S) Hecke operators
and one can talk about the p-adic representations of G := Gal(F/F) associated with Hecke
cigenvalues that appear in § (UP, L). We fix a modular absolutely irreducible p : G — GL,, (kL)
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and write S(U?, L)5 # 0 for the localization of Se, L) at the non-Eisenstein maximal ideal of
the Hecke algebra over (OO, associated with p (see [[7, §2.4] for details). We assume the following
“standard Taylor-Wiles hypothesis”.

Assumption 5.1. 1) p>2;
(2) F is an unramified extension of F'T;
(3) G is quasi-split at all finite places of F'";
(4) U, is hyperspecial at all places v of F'* that are inert in F
(5) F contains no non-trivial {/1 and the image of p ’Gal(? JE( V1)) is adequate, see [8, Rem.
1.1].

Let R; s be the deformation ring of polarized deformations of p that are unramified outside
S. This is a Noetherian complete local ring over O, with residue field k7. We have an action of
R5; s over S (UP, L); which factors through the Hecke actions and commutes with that of G, (for
details, see also [7, §2.4]). Let Spf (prg)“g denote the rigid generic fiber of the formal scheme
Spf(Rp,s) in the sense of Berthelot, cf. [14, §7]. Let fp be the rigid space over Q, parametrizing
continuous characters of 7}, and we write fp, 1, for its base change. Denote by S (ur, L)%]ﬂ the

subspace of S (UP, L)5 consisting of Q,-locally analytic vectors under the action of G,,. Then

~

S(UP, L)%rl is a locally analytic representation of G, and if we apply Emerton’s Jacquet module

~

functor with respect to By, Jp,(S(U?, L)5") becomes an essentially admissible locally analytic

~

representation of T}, ([16, Def. 6.4.9]). The dual Jp,(S(U?, L)5")" defines a coherent sheaf on
the quasi-Stein space Spf (R )" x ﬁ,, - We define the eigenvariety Y (U?, p) to be the scheme-
theoretical support of the cohereni sheaf defined by Jp, (S(U?, L)5")" in Spf (R5,5)"8 x T), 1. An
L-point (p,6) € Spf(R5s)"8 x Tp, 1 isin Y (U?, p) if and only if

~

Hom, (3, Jg, (S(U”, L)g[m,]*")) # 0

where m, is the maximal ideal of vag[%] corresponding to p and S(U?, L)slm,] denotes the

subspace of elements in S(U?, L)5 annihilated by m,,.
5.2. The companion points. We will give the description of all companion points for a generic
crystalline point. Suppose (p,d) € Y (UP,p)(L). Let p, := p |g,. forv € S,. Set ¥, := {7 :
Fy — L} forv € Sy, and ¥, := Uyes,Xy. Assume that for each v € Sp, py is crystalline.
Then we have ¢-modules Deris(py) over L ®q, Fy, where I is the maximal unramified sub-
field of Fyy. Take 7,0 € ¥,. Then 5.0 acts linearly on Deyis(py) ® L&g, Fy o l0mo - Let
{@uv1," ,pun} be the multiset of eigenvalues of F5.0°%] which is independent of the choice
of 7, 0. We say that p is generic crystalline if <pv7¢<p;} ¢ {1,plf50®l} forany i # jand v € S,.
A refinement R = (R, )ves, for the generic crystalline representation p is a choice of an ordering
Ry, = (pu,1,° -+ ,ppn) of the n different eigenvalues for all v € S,. Thus, p has (n!)‘SP|
different refinements.

Let | - |, be the norm of Fy such that [p|r, = p~F#@]. Denote by dp, the smooth character
|- |7};1 R -®| !;};2”1 R Q- \E” of T, ~ (FX)" and 05, = @ues, 0B, the character of 7).
We define an automorphism ¢ = (ty)ves, Of fp,L = Huesp T\v,L given by 1, (8,1, ,0un)) =
6B, (0p1,++ 0yt oo 6, n€" 1) where € denotes the cyclotomic characters.

Let h = (h;);es, = (hr1,-+, hrn)ren, Where hyp < -+ < hg, are the T-Hodge-
Tate weights of p, if 7 € X,. Let S, be the n-th symmetric group and act on the n-tuples
(hr1,--- , hrp) in standard ways. For w = (wy)ves, = (Wr)ves, res, € (S,)*, define a char-

acter dp, ,, = (LU (z“’“(h“)unr(gov))) < of T,. Let Wp, = (Wp, )ves, rex, be the subgroup
’ - vES)
of (S,,)>» consisting of permutations that fix h. Here P, denotes the parabolic subgroup of block

upper-triangular matrices in GL,, with the Weyl group (of its Levi subgroup) identified with Wp_.
Set Dyr,+(pv) := Dar(pv) D L@q, Fs,l0T L. If we choose a basis (eq,--- ,ep) of Dyr +(py)
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of eigenvectors of go[F 5.0:Q] with eigenvalues (¢y. 1, -+ , ¥y n), then the Hodge-Tate filtration on
Dgr,+(py) corresponds to a point on the flag variety GL,,/P; which lies in some Bruhat cell
Brwg. P;/P; for some wr, € S,/Wp, and wg, is independent of scaling of the eigenvectors.
Here R signifies the refinement ¢. Let wr = (Wr, )ves,,res, € (Sn)EP/pr.

Define a subset of points of T\p, L
W(p) :={0gw|weE (Sn)EP/pr, w > wr, R is a refinement of p}

where > denotes the usual Bruhat order on S, (or its quotient). Notice that there is a natural
partition W (p) = [ [z Wr(p) and W (p) depends only on p,, v € Sp,.

By the control of the companion points on the trianguline variety in the generic crystalline cases
(I8, §4.2] and [33], §4.11), we have an inclusion {&’ | (p,d’) € Y(UP,p)} C W (p). Below is our
main theorem.

Theorem 5.2. Let (p,d) € Y(UP,p)(L) be a generic crystalline point as above and recall that
we have assumed the Taylor-Wiles hypothesis (Assumption[5.1)). Then

W(p) c{d"| (p,d) € Y(U",p)}.

Proof. We need the patched eigenvariety in [7, §3.2]. For v € S, let R’ﬁ /Op, be the maximal
reduced Zj,-flat quotient of the framed deformation ring of p;. We can similarly define R%U for
v € S\ Sy Let Kp = [[,es, GLa(Or;) C Ilyes, GLn(F5) =~ Gp. Recall that under the
Taylor-Wiles assumption, there are some positive integers g and ¢, a patching module M in [12]]
over the ring Roo = ®yesl; [[21,- -, 7,]], an Op-morphism Soo := Or[[y1, -+, ygl] = Reo
and a surjection Ry /a — Rj s of completed local rings over O, where a = (y1,- - ,¥q), such
that M is a finite projective Soo [[Kp]|-module and IT, := Hom@™ (Mo, L) is a Ro-admissible
Banach representation of G, with an isomorphism IT [a] ~ S(e, L)5 that is compatible with the
actions of R, /a and R s (the action of R g factors through the quotient 5 s). Write I157 for the
subspace of locally R..-analytic vectors in Il ([Z, Déf. 3.2]). The patched eigenvariety X, (p) is
the support of J, (Hgg).’ insidAe Spf(Roo )8 x T 1, = Spf(f%esp R )" xSpf(®yes\s, 15, )" X
Spf(Orl[z1, -, 24]])"8 x T) 1 =1 X5, x Xpp x U9 x T . By [7, Thm. 3.21, §4.1], we have
closed embeddings

Y(UP,p) = Xp(p) = ¢ (Xm(pp)) X (X xUY) C X5, X fp,L X Xgr x UY

where Xii(p,) = [],c s, Xt:i(p,) and ¢ is extended to an automorphism of X5, x ’fp, 1, by base
change. Moreover, X, (p) is equidimensional and is identified with a union of irreducible compo-
nents of ¢ (X (ﬁp)) X (Xzr x UY) under the above closed embedding. By the argument as in the
first steps of the proof of [8, Thm. 5.3.3], we are reduced to prove the lemma below.

Lemma 5.3. Assume that a point ((pp = (pv)ves,,t(9)),y) € t (Xui(p,)) X (Xz» x UY) is in
X, (p)(L) where each p,,v € Sy is generic crystalline. Then ((pp,dx .,),2) € Xp(p)(L) if and
only if w > wg in (Sp)>® /Wp, where R denotes refinements of p,.

Now we prove the lemma. By [33, Thm. 4.10], we may assume ((pp = (pu)ves,,1(0)),2) €
v (Uni(p,)) x (Xp» x 1U9). Suppose that § corresponds to a refinement ¢ = (¢, )ves,- We need
to prove that the companion points for other refinements exist on the eigenvariety. We only need
to prove the existence of companion points for an arbitrary refinement ¢’ such that fﬁ) =9, for
all v # vg for some vg and gogo is the refinement permuting ¢y, i, and @y, i,+1. By Proposition
there exists a subset Z C X,i(p,,) that quasi-accumulates at (py,, d,,,) consisting of generic
regular crystalline points and their local companion points ((Z) quasi-accumulates at {((pvy, 0,,))
which is a local companion point of (py,, d,,) for the refinement ¢ . Since Uyi(p,) is smooth
at (pp,0), we may assume every (2, (pv, 0, )vv,), 2 € Z is contained in the same irreducible
component of Xiyi(pp) with ((pu,d,)ves, ). In particular for any z € Z, (¢(2, (pv, 0y vty ), Y) €

X,(p). By [6, Thm. 5.5], the classicality (which follows from [33] Prop. 4.9], but essentially [6,
Thm. 3.9] is enough for us, and the classicality is only partial for vg), and the discussions in the
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beginning of [8, §5.3], the companion points (¢(¢(2), (P, 0y )v£v,)s¥) are in X, (p) and quasi-
accumulate at the point (¢(C((pugs 0yy))s (Pos 8 )vstey ), y) in X X Tp 1 X (Xp x U9). Hence

=V

(Z’(C((pvoaévo))> (Pm év)lﬁévo)’ y) € Xp(p) by Lemma and Lemma D

5.3. Locally analytic socle conjecture. Let (p,d) € Y(UP,p)(L) be generic crystalline as be-
fore. We write A = (Ar)rex, ves, € (Z™)¥r where Ay = (Ar1, 5 Arm) = (Brmy o s hei +
n—1,---,hr-1 +n —1). We identify the base change to L of the Q,-Lie algebra of G, with
g = [Lex, 8ln/z- Let b= [Les, b, be the Borel subalgebra of g of lower triangular matri-
ces and t = HTezp t; be the Cartan subalgebra of diagonal matrices. We view A as a weight

of t and extend it to b. For a weight 1 of t, let;( 1) be the irreducible g-module with the high-
est weight 1 in the BGG category attached to b. For a refinement R of p, we write 0y g, for

the smooth part of % ,,, that is ansmggw is an algebraic character of 7). Notice that o g,
is independent of w. Let Ep be the opposite Borel subgroup of B, in G,. Recall by Orlik-
Strauch’s theory [29]], we have topologically irreducible admissible locally analytic representa-
tions fg: (L(—wwp - N), §R7sm6§;), see e.g. [33 §4.3]. Here wy is the longest element in Sy

and wwyg - A denotes the usual dot action. By [33| Prop. 4.9], we have the following corollary of
Theorem [5.2] on the locally analytic socle conjecture.

Corollary 5.4. Under the assumptions and notation of Theorem there is an injection
G J— _ o~
(5.1) .FEZ:(L(—IUU}O ) A)aéR,sméB;) — S(Up7 L)ﬁ[mp}an

of locally analytic representations of G, for all refinements R of p and w € SE " /Wp,, w > wg.

Remark 5.5. Assuming that, in the situation of Theorem [5.2] and Corollary [5.4] the Hodge-Tate
weights of p,, satisfy that h,; # h,; foralli # j and 7 € ¥, then there exists a finite length
admissible locally analytic representation H(pp)fS = @Uespﬂ(pv)fs of G, in [9] such that the

G)p-socle of H(pp)lcS coincides with the finite direct sum of pairwise non-isomorphic irreducible
admissible locally analytic representations of G, that are isomorphic to one of those in the left-

hand side of ll and there exists an injection I1(p,)® — S, L)z[m,]* ([9, Thm. 1.1]). The
representation H(pp)fS is called the “finite slope part” since it is constructed from principal series
(thus has Jordan-Holder factors of the type of Orlik-Strauch). Using Corollary [5.4] similar result
still holds without the regular assumption on Hodge-Tate weights. One just need to notice that
[9, Prop. 4.8] is proved without any assumption on the regularity of weights and we can define
I'I(pv)fs in non-regular cases in the same way as [9, Def. 5.7]. Then the proof of [9, Thm. 5.12]
applies with minor modifications.
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